精英家教网 > 高中数学 > 题目详情
4.已知命题p:?x∈R,cosx>sinx,命题q:?x∈(0,π),sinx+$\frac{1}{sinx}$>2,则下列判断正确的是(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题

分析 命题p:取x=0∈R,cosx>sinx成立,即可判断出真假.命题q:取x=$\frac{π}{2}$时,$sin\frac{π}{2}$+$\frac{1}{sin\frac{π}{2}}$=2,此时不成立,即可判断出真假,再利用复合命题真假的判定方法即可得出.

解答 解:命题p:?x=0∈R,cosx>sinx,因此是真命题.
命题q:?x∈(0,π),sinx+$\frac{1}{sinx}$>2,是假命题,取x=$\frac{π}{2}$时,$sin\frac{π}{2}$+$\frac{1}{sin\frac{π}{2}}$=2,此时不成立,因此是假命题.
则下列判断正确的是:命题p∧(¬q)是真命题.
故选:D.

点评 本题考查了三角函数的单调性及其值域、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某次军事演习要出动一艘航母,2艘攻击型潜艇一前一后,3艘驱逐舰和3艘护卫舰分列左右,每侧3艘,同侧不能都是同种舰艇,则舰艇分配方案的方法数为(  )
A.72B.324C.648D.1296

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且3acosA=bcosC+ccosB
(1)求cosA
(2)若a=3,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,已知BC=2,AC=$\sqrt{7}$,$B=\frac{2π}{3}$,那么△ABC的面积是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某班级要从4名男生、2名女生中选派4人参加某次社区服务,则所选的4人中至少有1名女生的概率为(  )
A.$\frac{14}{15}$B.$\frac{8}{15}$C.$\frac{2}{5}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知如图,△ABC中,AD是BC边的中线,∠BAC=120°,且$\overrightarrow{AB}•\overrightarrow{AC}$=-$\frac{15}{2}$.
(Ⅰ)求△ABC的面积;
(Ⅱ)若AB=5,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“?x∈R,sinx>1”的否定是(  )
A.?x∈R,sinx≤1B.?x∈R,sinx>1C.?x∈R,sinx=1D.?x∈R,sinx≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}是等比数列,其前n项和为Sn,满足S2+a1=0,a3=12.
(1)求数列{an}的通项公式;
(2)是否存在正整数n,使得Sn>2010?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若f(x)=ax+b的图象过点(1,7)及点(0,4),则f(x)的表达式为f(x)=4x+3.

查看答案和解析>>

同步练习册答案