分析 (1)根据正弦定理将边化角,利用两角和的正弦函数公式化简得出cosA;
(2)利用余弦定理和基本不等式得出bc的最大值,代入三角形的面积公式求出面积最大值.
解答 解:(1)在△ABC中,∵3acosA=bcosC+ccosB,
∴3sinAcosA=sinBcosC+sinCcosB=sin(B+C)=sinA,即3sinAcosA=sinA,
又A∈(0,π),∴sinA≠0,
∴$cosA=\frac{1}{3}$.
(2)∵a2=b2+c2-2bccosA,即${b^2}+{c^2}-\frac{2}{3}bc=9$,∴b2+c2=9+$\frac{2}{3}$bc≥2bc,∴$bc≤\frac{27}{4}$.
∵sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$,
∴△ABC的面积$S=\frac{1}{2}bcsinA$$≤\frac{1}{2}•\frac{27}{4}•\frac{{2\sqrt{2}}}{3}=\frac{{9\sqrt{2}}}{4}$,($b=c=\frac{{3\sqrt{3}}}{2}$时取等号)
∴${S_{max}}=\frac{{9\sqrt{2}}}{4}$.
点评 本题考查了正弦定理,余弦定理,基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a6 | B. | a8 | C. | a9 | D. | a10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$+$\frac{2}{5}$i | B. | -$\frac{1}{5}$+$\frac{2}{5}$i | C. | -$\frac{1}{5}$-$\frac{2}{5}$i | D. | $\frac{1}{5}$-$\frac{2}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{7}$ | B. | $\frac{7}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | [-2,0] | C. | (-∞,2] | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题p∨q是假命题 | B. | 命题p∧q是真命题 | ||
| C. | 命题p∨(¬q)是假命题 | D. | 命题p∧(¬q)是真命题 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com