精英家教网 > 高中数学 > 题目详情
10.把复数z的共轭复数记作$\overline z$,已知(3-4i)$\overline z$=1+2i,则z=(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.-$\frac{1}{5}$+$\frac{2}{5}$iC.-$\frac{1}{5}$-$\frac{2}{5}$iD.$\frac{1}{5}$-$\frac{2}{5}i$

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简,求得$\overline{z}$,则z可求.

解答 解:∵$\overline z=\frac{1+2i}{3-4i}=\frac{{({1+2i})({3+4i})}}{{({3-4i})({3+4i})}}=-\frac{1}{5}+\frac{2}{5}i$,
∴$z=-\frac{1}{5}-\frac{2}{5}i$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.用反证法证明命题:“在一个三角形的三个内角中,至少有二个锐角”时,假设部分的内容应为在一个三角形的三个内角中,至多有一个锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)计算$\frac{{A}_{9}^{5}{+A}_{9}^{4}}{{A}_{10}^{6}{-A}_{10}^{5}}$;
(2)证明:${A}_{n+1}^{m}$-${A}_{n}^{m}$=m${A}_{n}^{m-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={1,a},B={1,2,3},则“A⊆B”是“a=3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等腰梯形ABCD中,已知AB∥DC,AC与BD交于点M,AB=2CD=4.若$\overrightarrow{AC}$•$\overrightarrow{BD}$=-1,则cos∠BMC=$\frac{1}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且3acosA=bcosC+ccosB
(1)求cosA
(2)若a=3,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,则($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最大值为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某班级要从4名男生、2名女生中选派4人参加某次社区服务,则所选的4人中至少有1名女生的概率为(  )
A.$\frac{14}{15}$B.$\frac{8}{15}$C.$\frac{2}{5}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面M内有4个点,平面N内有5个点,问这九个点最多能确定(1)多少个平面?(2)多少个四面体?

查看答案和解析>>

同步练习册答案