精英家教网 > 高中数学 > 题目详情
19.某班级要从4名男生、2名女生中选派4人参加某次社区服务,则所选的4人中至少有1名女生的概率为(  )
A.$\frac{14}{15}$B.$\frac{8}{15}$C.$\frac{2}{5}$D.$\frac{4}{15}$

分析 先求出基本事件总数,所选的4人中至少有1名女生的对立事件是所选4人都是男生,由此能求出所选的4人中至少有1名女生的概率.

解答 解:∵某班级要从4名男生、2名女生中选派4人参加某次社区服务,
∴基本事件总数n=${C}_{6}^{4}$=15,
∵所选的4人中至少有1名女生的对立事件是所选4人都是男生,
∴所选的4人中至少有1名女生的概率为:
p=1-$\frac{{C}_{4}^{4}}{{C}_{6}^{4}}$=$\frac{14}{15}$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知点M是△ABC所在平面内的一点,且满足5$\overrightarrow{AM}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,则△AMB与△ABC的面积比为(  )
A.$\frac{5}{2}$B.$\frac{2}{5}$C.$\frac{7}{5}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.把复数z的共轭复数记作$\overline z$,已知(3-4i)$\overline z$=1+2i,则z=(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.-$\frac{1}{5}$+$\frac{2}{5}$iC.-$\frac{1}{5}$-$\frac{2}{5}$iD.$\frac{1}{5}$-$\frac{2}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=(x-a-1)(2x-a),g(x)=ln(x-a),若当x>a时,f(x)•g(x)≥0恒成立,则实数a的取值范围是(  )
A.[0,+∞)B.[-2,0]C.(-∞,2]D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2},x≤a}\\{{{log}_2}({x+1}),x>a}\end{array}}$在区间(-∞,a]上单调递减,在(a,+∞)上单调递增,则实数a的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,cosx>sinx,命题q:?x∈(0,π),sinx+$\frac{1}{sinx}$>2,则下列判断正确的是(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\frac{zi}{i-1}=i+1$,则复数z在复平面上所对应的点位于(  )
A.实轴上B.虚轴上C.第一象限D.第二象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.半径为$\frac{2\sqrt{3}}{3}$的圆内接三角形ABC,∠A=60°,则△ABC周长的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x,y满足约束条件$\left\{\begin{array}{l}{x+1≤0}\\{x-y+2≥0}\\{x+2y+2≥0}\end{array}\right.$且目标函数z=ax-y取得最大值的点有无数个,则z的最小值等于(  )
A.-2B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案