精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=(x-a-1)(2x-a),g(x)=ln(x-a),若当x>a时,f(x)•g(x)≥0恒成立,则实数a的取值范围是(  )
A.[0,+∞)B.[-2,0]C.(-∞,2]D.[-2,+∞)

分析 求出两个函数的零点,则f(x)与g(x)有共同的零点x=a+1,结合条件当x>a时,f(x)•g(x)≥0恒成立,得到对应区域符号相同,利用数形结合进行求解即可.

解答 解:函数f(x)的两个零点为x=a+1和x=$\frac{a}{2}$,
由g(x)=ln(x-a)=0得x-a=1,即x=a+1,
若x>a时,f(x)•g(x)≥0恒成立,
等价为当x≥a+1时,f(x)≥0,
当a<x≤a+1时,f(x)≤0,
即$\frac{a}{2}$≤a<a+1,即$\frac{a}{2}$≤a,
即a≥0,
故选:A

点评 本题主要考查不等式恒成立问题,根据条件转化为两个函数有共同的零点,且在对应取值范围内函数的符号相同,利用数形结合建立不等式关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.用1、2、3、4四个数字可以组成百位上不是3的无重复数字的三位数的个数是18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={1,a},B={1,2,3},则“A⊆B”是“a=3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且3acosA=bcosC+ccosB
(1)求cosA
(2)若a=3,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,则($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最大值为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,已知BC=2,AC=$\sqrt{7}$,$B=\frac{2π}{3}$,那么△ABC的面积是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某班级要从4名男生、2名女生中选派4人参加某次社区服务,则所选的4人中至少有1名女生的概率为(  )
A.$\frac{14}{15}$B.$\frac{8}{15}$C.$\frac{2}{5}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“?x∈R,sinx>1”的否定是(  )
A.?x∈R,sinx≤1B.?x∈R,sinx>1C.?x∈R,sinx=1D.?x∈R,sinx≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$\overrightarrow{AB}$$•\overrightarrow{AC}$=5,$\overrightarrow{BA}$$•\overrightarrow{BC}$=4,则AB=(  )
A.9B.3C.2D.1

查看答案和解析>>

同步练习册答案