精英家教网 > 高中数学 > 题目详情
2.若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,则($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最大值为1+$\sqrt{2}$.

分析 由$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,可设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(cosθ,sinθ),将($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的表达式转化为正弦型函数的形式,再根据正弦型函数的性质得到($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最大值.

解答 解:由题意设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(cosθ,sinθ),
则($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=(1-cosθ,-sinθ)•(-cosθ,1-sinθ)
=-cosθ+cos2θ-sinθ+sin2θ
=1-(sinθ+cosθ)
=1-$\sqrt{2}$sin($θ+\frac{π}{4}$),
∴($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最大值为1+$\sqrt{2}$,
故答案为:1+$\sqrt{2}$.

点评 本题考查的知识点是平面向量数量积的运算,考查y=Asin(ωx+φ)型函数的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.运行如图的程序框图,若输出的y值随着输入的x的增大而增大,则a的取值不可能是(  )
A.$\frac{5}{2}$B.$\frac{7}{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.相距1400m的A、B两个哨所,听到炮弹爆炸的时间相差3s,已知声速340m/s,则炮弹爆炸点所在曲线的离心率为(  )
A.$\frac{51}{70}$B.$\frac{70}{51}$C.$\frac{35}{17}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.把复数z的共轭复数记作$\overline z$,已知(3-4i)$\overline z$=1+2i,则z=(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.-$\frac{1}{5}$+$\frac{2}{5}$iC.-$\frac{1}{5}$-$\frac{2}{5}$iD.$\frac{1}{5}$-$\frac{2}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(x3+$\frac{1}{{x}^{2}}$)n的展开式第6项系数最大,则其展开式的常数项为210?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=(x-a-1)(2x-a),g(x)=ln(x-a),若当x>a时,f(x)•g(x)≥0恒成立,则实数a的取值范围是(  )
A.[0,+∞)B.[-2,0]C.(-∞,2]D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2},x≤a}\\{{{log}_2}({x+1}),x>a}\end{array}}$在区间(-∞,a]上单调递减,在(a,+∞)上单调递增,则实数a的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\frac{zi}{i-1}=i+1$,则复数z在复平面上所对应的点位于(  )
A.实轴上B.虚轴上C.第一象限D.第二象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若曲线x2+y2-2x-8y+16=0与曲线x2+y2-6x-4y+12=0关于直线x+by+c=0对称,则bc=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步练习册答案