精英家教网 > 高中数学 > 题目详情
12.若曲线x2+y2-2x-8y+16=0与曲线x2+y2-6x-4y+12=0关于直线x+by+c=0对称,则bc=(  )
A.-1B.1C.-2D.2

分析 分别配方可得两圆的圆心,由对称性可得bc的方程组,解方程组可得.

解答 解:方程x2+y2-2x-8y+16=0可化为(x-1)2+(y-4)2=1,
表示圆心为(1,4)半径为1的圆,
同理方程x2+y2-6x-4y+12=0可化为(x-3)2+(y-2)2=1,
表示圆心为(3,2)半径为1的圆,
∵两圆关于直线x+by+c=0对称,
∴两圆心(1,4)和(3,2)关于直线x+by+c=0对称,
∴$\left\{\begin{array}{l}{\frac{1+3}{2}+b\frac{4+2}{2}+c=0}\\{\frac{4-2}{1-3}•(-\frac{1}{b})=-1}\end{array}\right.$,解得b=-1,c=1,
∴b=-1,
故选:A.

点评 本题考查两圆的对称性,转化为两点关于直线的对称性是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,则($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最大值为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:函数f(x)=|2cos2x-1|的最小正周期为π;
命题q:若函数f(x-2)为奇函数,则f(x)关于(-2,0)对称,则下列命题是真命题的是(  )
A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面M内有4个点,平面N内有5个点,问这九个点最多能确定(1)多少个平面?(2)多少个四面体?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若曲线x2+y2-2x-8y+16=0与曲线x2+y2-6x-4y+12=0关于直线x+by+c=0对称,则bc=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$\overrightarrow{AB}$$•\overrightarrow{AC}$=5,$\overrightarrow{BA}$$•\overrightarrow{BC}$=4,则AB=(  )
A.9B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a2、a13是方程x2-x-3=0的两个根,则前14项的和S14为(  )
A.20B.16C.12D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f′(x)是定义在R上的函数f(x)的导数,满足f′(x)+2f(x)>0,且f(-1)=0,则f(x)<0的解集为(  )
A.(-∞,-1)B.(-1,1)C.(-∞,0)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知左、右焦点分别是F1,F2的双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$上一点A满足AF1⊥AF2,且|AF1|=3|AF2|,则该双曲线的渐近线方程为(  )
A.y=±$\frac{\sqrt{10}}{2}$xB.y=±$\frac{\sqrt{6}}{2}$xC.y=±$\sqrt{6}$xD.y=±$\sqrt{10}$x

查看答案和解析>>

同步练习册答案