精英家教网 > 高中数学 > 题目详情
7.若曲线x2+y2-2x-8y+16=0与曲线x2+y2-6x-4y+12=0关于直线x+by+c=0对称,则bc=(  )
A.-1B.1C.-2D.2

分析 配方易得两圆的圆心和半径,把圆的对称转化为点的对称,可得bc的方程组,解方程组相乘可得.

解答 解:对方程x2+y2-2x-8y+16=0配方可得(x-1)2+(y-4)2=1,
表示圆心为(1,4)半径为1的圆,
对方程x2+y2-6x-4y+12=0配方可得(x-3)2+(y-2)2=1,
表示圆心为(3,2)半径为1的圆,
∵两圆关于直线x+by+c=0对称,
∴两圆心(1,4)和(3,2)关于直线x+by+c=0对称,
∴$\left\{\begin{array}{l}{\frac{1+3}{2}+b\frac{4+2}{2}+c=0}\\{\frac{4-2}{1-3}•(-\frac{1}{b})=-1}\end{array}\right.$,解得b=-1,c=1,
∴b=-1,
故选:A.

点评 本题考查两圆位置关系的判定,涉及点关于直线的对称性,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.(x3+$\frac{1}{{x}^{2}}$)n的展开式第6项系数最大,则其展开式的常数项为210?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分图象如图所示,f(x0)=f(0),则正确的选项是(  )
A.$φ=\frac{π}{6},{x_0}=\frac{5}{3}$B.$φ=\frac{π}{6},{x_0}=1$C.$φ=\frac{π}{3},{x_0}=\frac{5}{3}$D.$φ=\frac{π}{3},{x_0}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn=$\frac{1}{7}$(23n+1-2)
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求$\frac{1}{{b}_{1}{b}_{2}}$$+\frac{1}{b{{\;}_{2}b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(1)求证:a,b,c成等比数列;
(2)若$\overrightarrow{BA}•\overrightarrow{BC}$=4,求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若曲线x2+y2-2x-8y+16=0与曲线x2+y2-6x-4y+12=0关于直线x+by+c=0对称,则bc=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足i•z=1+i,则z的共轭复数的虚部是(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若随机变量Y~B(5,$\frac{1}{4}$),则EY为(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{5}{4}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2015}(x-1),x>2}\\{sin\frac{πx}{2},0≤x≤2}\\{(\frac{1}{2})^{x}-1,x<0}\end{array}\right.$,若f(x)=k有四个互不相等的实数根,则函数f(x)的零点为0和2;k的取值范围为0<k<1.

查看答案和解析>>

同步练习册答案