精英家教网 > 高中数学 > 题目详情
17.已知关于x的函数f(x)=$\frac{{2t{x^2}+\sqrt{2}tsin(x+\frac{π}{4})+x}}{{2{x^2}+cosx}}$的最大值为a,最小值为b,若a+b=2,则实数t的值为1.

分析 函数f(x)可化为t+$\frac{tsinx+x}{2{x}^{2}+cosx}$,令g(x)=$\frac{tsinx+x}{2{x}^{2}+cosx}$,则g(-x)=-g(x),设g(x)的最大值为M,最小值为N,则M+N=0,由f(x)的最大值和最小值,解方程即可得到t=1.

解答 解:函数f(x)=$\frac{{2t{x^2}+\sqrt{2}tsin(x+\frac{π}{4})+x}}{{2{x^2}+cosx}}$=$\frac{2{t}^{2}+\sqrt{2}t(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx)+x}{2{x}^{2}+cosx}$
=$\frac{t(2{x}^{2}+cosx)+(tsinx+x)}{2{x}^{2}+cosx}$
=t+$\frac{tsinx+x}{2{x}^{2}+cosx}$,
令g(x)=$\frac{tsinx+x}{2{x}^{2}+cosx}$,
则g(-x)=$\frac{-tsinx-x}{2{x}^{2}+cosx}$=-g(x),
设g(x)的最大值为M,最小值为N,
则M+N=0,
即有t+M=a,t+N=b,
a+b=2t+M+N=2t=2,
解得t=1.
故答案为:1.

点评 本题考查函数的奇偶性及运用,考查三角函数的诱导公式和运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$.
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|.
(3)求$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x∈(1,+∞),f(x)>(k-1)x-k恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an},{bn}的前n项和分别为Sn,Tn,且$\frac{S_n}{T_n}$=$\frac{3n-1}{2n+3}$,则$\frac{a_7}{b_7}$=(  )
A.$\frac{20}{17}$B.$\frac{38}{29}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在正四棱锥V-ABCD内有一半球,其底面与正四棱锥的底面重合,且与正四棱锥的四个侧面相切,若半球的半径为2,则当正四棱锥的体积最小时,其高等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\frac{{x}^{2}-x+2}{{x}^{2}}$,若对x>0恒有xf(x)+a>0成立,则实数a的取值范围是a>1-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出如下四个命题:

(1)图①中的阴影部分可用集合{(x,y)|x2+y2-2y<0}
(2)设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0曲线如图②所示,则μ1<μ2,σ1<σ2
(3)已知边长为2的等边三角形ABC,过C作BC的垂线l,如图③,则将△ABC绕l旋转一周形成的曲面所围成的几何体的体积是2$\sqrt{3}$π
(4)执行如图④所示的程序框图,输出S的值是-$\frac{1}{2}$.
其中正确命题的序号是(1)(3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2sin(2x+$\frac{π}{3}}$),g(x)=mcos(2x-$\frac{π}{6}}$)-2m+3>0,m>0,对任意x1∈[0,$\frac{π}{4}}$],存在x2∈[0,$\frac{π}{4}}$],使得g(x1)=f(x2)成立,则实数m的取值范围是$[{1,\frac{4}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的内角A,B,C所对的边分别为a,b,c,sinB+sinC=$\frac{1}{R}$(其中R为△ABC的外接圆的半径)且△ABC的面积S=a2-(b-c)2
(1)求tanA的值;
(2)求△ABC的面积S的最大值.

查看答案和解析>>

同步练习册答案