精英家教网 > 高中数学 > 题目详情
在焦点在x轴的椭圆过点P(3,0),且长轴长是短轴长的3倍,则其标准方程为______.
∵椭圆的焦点在x轴上,
∴可设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0).
又∵椭圆过点P(3,0),且长轴长是短轴长的3倍,
∴a=3且2a=3×2b,可得b=1
因此,该椭圆的标准方程为
x2
9
+y2=1

故答案为:
x2
9
+y2=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点是它的焦点,长轴长为,焦距为,静放在点的小球(小球的半径不计),从点沿直线出发,经椭圆壁反弹后第一次回到点时,小球经过的路程是
A.B.C.D.以上答案均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面内已知两点A(0,2)、B(0,-2),若动点P满足|PA|+|PB|=4,则点P的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.线段

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆
x2
16
+
y2
m
=1
过点(2,3),椭圆上一点P到两焦点F1、F2的距离之差为2,
(1)求椭圆方程
(2)试判断△PF1F2的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知△ABC的两个顶点B(-3,0),C(3,0)且三边AC、BC、AB的长成等差数列,求点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
m
+
y2
3
=1
的右焦点与抛物线y2=12x的焦点重合,则m=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(-3,2)离心率为
3
3
,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求
OA
OB
的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P(2cosα,
3
sinα)
(α∈R)与椭圆C:
x2
4
+
y2
3
=1
的位置关系是(  )
A.点P在椭圆C上
B.点P与椭圆C的位置关系不能确定,与α的取值有关
C.点P在椭圆C内
D.点P在椭圆C外

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,从椭圆
x2
a2
+
y2
b2
=1(a>b>o)上一点P向x轴作垂线,垂足恰好为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且ABOP,则椭圆的离心率e=______.

查看答案和解析>>

同步练习册答案