精英家教网 > 高中数学 > 题目详情
若椭圆
x2
m
+
y2
3
=1
的右焦点与抛物线y2=12x的焦点重合,则m=(  )
A.3B.6C.9D.12
由抛物线y2=12x,可得焦点F(3,0).
∴椭圆
x2
m
+
y2
3
=1
的右焦点为F(3,0).
∴m-3=32
解得m=12.
故选:D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(文) 已知椭圆的离心率为,直线ly=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)过椭圆C1的左顶点A做直线m,与圆O相交于两点R、S,若是钝角三角形,求直线m的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程
x2
25-m
+
y2
16+m
=1
表示焦点在y轴上的椭圆,则实数m的取值范围是(  )
A.(-16,25)B.(
9
2
,25)
C.(-16,
9
2
)
D.(
9
2
,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心在原点,焦点在y轴,离心率为
1
2
的椭圆方程可能为(  )
A.
x2
4
+
y2
3
=1
B.
x2
3
+
y2
4
=1
C.
x2
4
+y2=1
D.x2+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在焦点在x轴的椭圆过点P(3,0),且长轴长是短轴长的3倍,则其标准方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的焦点是F1(0,-
3
),F2(0,
3
)
,点P在椭圆上且满足|PF1|+|PF2|=4,则椭圆的标准方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别求适合下列条件的曲线的标准方程:
(1)焦点为F1(0,-1)、F2(0,1)且过点M(
3
2
,1)椭圆;
(2)求经过点A(0,4),B(4,6)且圆心在直线x-2y-2=0上的圆的方程;
(3)与双曲线x2-
y2
2
=1有相同的渐近线,且过点(2,2)的双曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
2
=1(a>0)
的左右焦点分别为F1、F2,A是椭圆C上的一点,且
AF2
F1F2
=0
,坐标原点O到直线AF1的距离为
1
3
|OF1|

(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过点Q的直线l交x轴于点F(-1,0),交y轴于点M,若|MQ|=2|QF|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,函数y=f(x)的图象是中心在原点、焦点在x轴上的椭圆的两段弧,则不等式f(x)<f(-x)+x的解集为(  )
A.{x|-
2
<x<0或
2
<x≤2}
B.{x|-2≤x<-
2
2
<x≤2}
C.{x|-2≤x<-
2
2
2
2
<x≤2}
D.{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

同步练习册答案