精英家教网 > 高中数学 > 题目详情
分别求适合下列条件的曲线的标准方程:
(1)焦点为F1(0,-1)、F2(0,1)且过点M(
3
2
,1)椭圆;
(2)求经过点A(0,4),B(4,6)且圆心在直线x-2y-2=0上的圆的方程;
(3)与双曲线x2-
y2
2
=1有相同的渐近线,且过点(2,2)的双曲线.
(1)∵椭圆焦点为F1(0,-1)、F2(0,1),
∴设椭圆的标准方程为:
x2
a2-1
+
y2
a2
=1

∵椭圆过点M(
3
2
,1),
9
4
a2-1
+
1
a2
=1

解得a2=4,或a2=
1
4

∴椭圆方程为:
x2
3
+
y2
4
=1

(2)设圆心坐标为(a,b),由题意知:
a2+(b-4)2
=
(a-4)2+(b-6)2
a-2b-2=0

解得a=4,b=1,
∴圆心为(4,1),
圆半径r=
(4-0)2+(1-4)2
=5,
∴圆的方程为(x-4)2+(y-1)2=25.
(3)设与双曲线x2-
y2
2
=1有相同的渐近线的双曲线方程为:
x2-
y2
2
=λ(λ≠0)

把点(2,2)代入,得λ=4-
4
2
=2

∴双曲线方程为
x2
2
-
y2
4
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知两个定点F1(-4,0),F2(4,0),且|MF1|+|MF2|=8,则点M的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆
x2
16
+
y2
m
=1
过点(2,3),椭圆上一点P到两焦点F1、F2的距离之差为2,
(1)求椭圆方程
(2)试判断△PF1F2的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
m
+
y2
3
=1
的右焦点与抛物线y2=12x的焦点重合,则m=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(-3,2)离心率为
3
3
,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求
OA
OB
的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC的周长是16,A(-3,0),B(3,0),则动点C的轨迹方程是(  )
A.
x2
25
+
y2
16
=1
B.
x2
25
+
y2
16
=1(y≠0)
C.
x2
16
+
y2
25
=1
D.
x2
16
+
y2
25
=1(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P(2cosα,
3
sinα)
(α∈R)与椭圆C:
x2
4
+
y2
3
=1
的位置关系是(  )
A.点P在椭圆C上
B.点P与椭圆C的位置关系不能确定,与α的取值有关
C.点P在椭圆C内
D.点P在椭圆C外

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,若△AF1F2为正三角形且周长为6;
(1)求椭圆C的标准方程;
(2)若椭圆C上存在A,B两点关于直线y=x+m对称,求实数m的取值范围;
(3)若直线l:y=kx+n与椭圆C交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证直线l过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
36
+
y2
20
=1的离心率e是(  )
A.
5
3
B.
3
2
C.
3
5
5
D.
2
3

查看答案和解析>>

同步练习册答案