精英家教网 > 高中数学 > 题目详情
椭圆C的中心为坐标原点O,焦点在x轴上,离心率,且椭圆过点(2,0)。
(1)求椭圆方程;
(2)求圆上的点到椭圆C上点的距离的最大值与最小值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)已知焦点在X轴的椭圆,焦点为,焦距为,(1)求椭圆方程,(2)若是椭圆上一点,且,求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
椭圆C:的两个焦点为,点在椭圆C上,且,
,.
(1) 求椭圆C的方程;
(2) 若直线过圆的圆心,交椭圆C于两点,且关于点对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点PQ.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为AB,是否存在常数k,使得向量共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,若成等差数列,则椭圆的离心率为(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的焦距等于2,则m的值为(  )
A.10B.7C.10或4D.7或5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A(-1,0),B(1,0),点C满足,则(   )
A.6B.4C.2D.不确

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是等腰直角三角形,则这个椭圆的离心率是
A.                        B.           
C.                  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的离心率,过左焦点的直线交椭圆于两点,椭圆的右焦点为,则的周长是    ﹡   .则可以输出的函数是    ﹡   

查看答案和解析>>

同步练习册答案