精英家教网 > 高中数学 > 题目详情
19.已知f(x)是定义在R上的函数,且满足f(-x)=f(x),f(x+2)=f(2-x).若曲线y=f(x)在x=-1处的切线方程为x-y+3=0,则该曲线在x=5处的切线方程为(  )
A.x-y-3=0B.x-y-7=0C.x+y-3=0D.x+y-7=0

分析 由f(-x)=f(x),f(x+2)=f(2-x),可令x为x+2,可得f(x)为周期为4的函数,再由x=-1处的切线方程为x-y+3=0,可得f(1),f(5),再通过求导,可得导函数为奇函数且为周期函数,即可求得f′(5),由点斜式方程,即可得到所求切线方程.

解答 解:由f(-x)=f(x),f(x+2)=f(2-x),
即有f(x+4)=f(2-(x+2))=f(-x)=f(x),
则f(x)为周期为4的函数,
若曲线y=f(x)在x=-1处的切线方程为x-y+3=0,
则f(-1)=2,f′(-1)=1,
即有f(5)=f(1)=f(-1)=2,
对f(-x)=f(x),两边求导,可得-f′(-x)=f′(x),
由f(x+4)=f(x),可得f′(x+4)=f′(x),
即有f′(5)=f′(1)=-f′(-1)=-1,
则该曲线在x=5处的切线方程为y-2=-(x-5),
即为x+y-7=0.
故选:D.

点评 本题考查导数的运用:求切线方程,主要考查导数的几何意义,同时考查函数的奇偶性和周期性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{|x+1|+|x-3|-m}$的定义域为R.
(Ⅰ)求实数m的取值范围.
(Ⅱ)若m的最大值为n,当正数a、b满足$\frac{2}{3a+b}$+$\frac{1}{a+2b}$=n时,求7a+4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.记函数f(x)的导函数为f′(x),若f(x)对应的曲线在点(x0,f(x0))处的切线方程为y=-x+1,则(  )
A.f′(x0)=2B.f′(x0)=1C.f′(x0)=0D.f′(x0)=-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,E为AC上一点,且$\overrightarrow{AC}=4\overrightarrow{AE}$,P为BE上一点,且满足$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$(m>0,n>0),则$\frac{1}{m}$+$\frac{1}{n}$的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a=${∫}_{0}^{2}$($\frac{2}{5}$x2-$\frac{x}{5}$)dx,则($\frac{3}{2}$ax-$\frac{2}{\sqrt{x}}$)10的展开式中有理项共有6项.

查看答案和解析>>

科目:高中数学 来源:2017届河北正定中学高三上月考一数学(理)试卷(解析版) 题型:选择题

如图是一个程序框图,则输出的的值是( )

A.4 B.5

C.6 D.7

查看答案和解析>>

科目:高中数学 来源:2017届河北武邑中学高三上周考8.14数学(文)试卷(解析版) 题型:解答题

已知是正数,求证:

查看答案和解析>>

科目:高中数学 来源:2017届河北武邑中学高三上周考8.14数学(文)试卷(解析版) 题型:选择题

如图是函数的大致图象,则直线的图象与轴夹角大小为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2017届河北沧州一中高三上第七周周测数学试卷(解析版) 题型:选择题

(文)若平面向量满足,则的夹角是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案