分析 (Ⅰ)将问题转化为m-1≥$\frac{lnx+2}{x}$在(0,+∞)恒成立,令h(x)=$\frac{lnx+2}{x}$(x>0),求出h(x)的最大值,从而求出m的范围.
(Ⅱ)将问题转化为:lna-a≤-1,令h(a)=lna-a,通过讨论函数的单调性得到h(a)的最大值,从而证出答案
解答 解:(Ⅰ)G(x)+x+2≤g(x)恒成立,
即lnx+x+2≤mx在(0,+∞)恒成立,
∴m-1≥$\frac{lnx+2}{x}$在(0,+∞)恒成立,
令h(x)=$\frac{lnx+2}{x}$(x>0),
∴h′(x)=-$\frac{lnx+1}{{x}^{2}}$,
令h′(x)>0,解得:0<x<$\frac{1}{e}$,
令h′(x)<0,解得:x>e,
∴h(x)在(0,$\frac{1}{e}$)递增,在($\frac{1}{e}$,+∞)递减,
∴h(x)max=h($\frac{1}{e}$)=e,
∴m-1≥e,
∴m≥e+1;
证明:(Ⅱ)由b=G(a)+a+2,得:b=lna+a+2,得:b-2a=lna-a+2,
要证明:b-2a≤1,即证明:lna-a+2≤1,即证明:lna-a≤-1,
令h(a)=lna-a,则h′(a)=$\frac{1}{a}$-1=$\frac{1-a}{a}$,
令h′(a)>0,解得:0<a<1,令h′(a)<0,解得:a>1,
∴h(a)在(0,1)递增,在(1,+∞)递减,
∴h(a)最大值=h(1)=-1,
∴b-2a≤1
点评 本题考查了函数的单调性问题,考查了函数恒成立问题,考查了转化思想,导数的应用,是一道中档题
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 17 | C. | 18 | D. | 19 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 37 3n2-3n+1 | B. | 38 3n2-3n+2 | C. | 36 3n2-3n | D. | 35 3n2-3n-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com