精英家教网 > 高中数学 > 题目详情

已知首项为负的数列{an}中,相邻两项不为相反数,且前n项和为Sn=数学公式
(Ⅰ)证明数列{an}为等差数列;
(Ⅱ)设数列数学公式的前n项和为Tn,对一切正整数n都有Tn≥M成立,求M的最大值.

解:(I)∵Sn=

∴(an+1-an-2)(an+1-an)=0
∵相邻两项不为相反数
∴an+1-an=2
∴数列{an}为公差为2的等差数列;

(II)由(I)知an=2n-7


因为Tn在[1,2][3,+∝)上是增函数.
且T1=
要使得对一切正整数n都有Tn≥M成立
只要M≤-
∴M的最大值为
分析:(I)由Sn=.结合通项与前n项和间的关系公式,求得(an+1-an-2)(an+1-an)=0
再由相邻两项不为相反数,有an+1-an=2符合等差数列的定义.
(II)由(I)知an=2n-7,将变形,再用裂项相消法求得Tn,再通过单调性来求得其最小值即可.
点评:本题主要考查两个问题,一是判断数列,方法一般是定义法或通项公式法,二是求前n项和,常用方法是倒序相加法,错位相减法,裂项相消法等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•泸州二模)已知首项为负的数列{an}中,相邻两项不为相反数,且前n项和为Sn=
1
4
(an-5)(an+7)

(Ⅰ)证明数列{an}为等差数列;
(Ⅱ)设数列{
1
anan+1
}
的前n项和为Tn,对一切正整数n都有Tn≥M成立,求M的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南通市通州区高三4月查漏补缺专项检测数学试卷(解析版) 题型:解答题

已知数列单调递增,且各项非负,对于正整数,若任意的),仍是中的项,则称数列为“项可减数列”.

(1)已知数列是首项为2,公比为2的等比数列,且数列是“项可减数

列”,试确定的最大值;

(2)求证:若数列是“项可减数列”,则其前项的和

(3)已知是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,

并说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列单调递增,且各项非负.对于正整数,若任意的,仍是中的项,则称数列为“项可减数列”.

(Ⅰ)已知数列是首项为2,公比为2的等比数列,且数列是“项可减数列”,试确定的最大值.

(Ⅱ)求证:若数列是“项可减数列”,则其前项的和.

(Ⅲ)已知是各项非负的递增数列,写出(Ⅱ)的逆命题,判断该逆命题的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分16分)

已知数列单调递增,且各项非负.对于正整数,若任意的,仍是中的项,则称数列为“项可减数列”.

(Ⅰ)已知数列是首项为2,公比为2的等比数列,且数列是“项可减数列”,试确定的最大值.

(Ⅱ)求证:若数列是“项可减数列”,则其前项的和.

(Ⅲ)已知是各项非负的递增数列,写出(Ⅱ)的逆命题,判断该逆命题的真假,并说明理由.

查看答案和解析>>

同步练习册答案