精英家教网 > 高中数学 > 题目详情
13.已知4|x+2|-|x-1|≥3,则求得x的取值范围是{x|x≤-4,或x≥-$\frac{4}{5}$}.

分析 把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.

解答 解:4|x+2|-|x-1|≥3,等价于$\left\{\begin{array}{l}{x<-2}\\{-4(x+2)-(1-x)≥3}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{-2≤x<1}\\{4(x+2)-(1-x)≥3}\end{array}\right.$②,或 $\left\{\begin{array}{l}{x≥1}\\{4(x+2)-(x-1)≥3}\end{array}\right.$③.
解①求得x≤-4,解②求得-$\frac{4}{5}$≤x<1,解③求得 x≥1.
综上可得,原不等式的解集为{x|x≤-4,或x≥-$\frac{4}{5}$},
故答案为:{x|x≤-4,或x≥-$\frac{4}{5}$}.

点评 本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届广东华南师大附中高三综合测试一数学(理)试卷(解析版) 题型:解答题

已知实数满足,其中实数满足

(1)若,且为真,求实数的取值范围;

(2)若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=2x+x,g(x)=x-log${\;}_{\frac{1}{2}}$x,h(x)=log2x-$\sqrt{x}$的零点分别为x1,x2 ,x3,则x1,x2 ,x3的大小关系是x1<x2<x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥A-BOC中,AO⊥平面COB,∠OAB=∠OAC=$\frac{π}{6}$,AB=AC=2,BC=$\sqrt{2}$,D,E分别为AB,OB的中点.
(1)求证:CO⊥平面AOB;
(2)在线段CB上是否存在一点F,使得平面DEF∥平面AOC,若存在,试确定F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)求函数y=log${\;}_{\frac{1}{2}}$[2sin(2x+$\frac{π}{4}$)+$\sqrt{2}$]的定义域
(2)求函数y=tan2x-4tanx+3,x∈[$\frac{π}{4}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-1+$\frac{a}{{e}^{x}}$(a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.命题“?x∈R,ex>0”的否定是“?x∈R,ex>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”?“对于x∈[1,2],有(x2+2x)min≥(ax)max
D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.x,y∈R,f(xy)=f(x)f(y),其定义域、值域都为正,x>1时,f(x)>1,求其单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在Rt△ABC中,∠B=30°,∠C=60°,AC=a,动点P,Q自A出发分别沿边界按ABCA的方向及ACBA的方向运动,它们的速度之比是1:3,当P,Q相遇时,停止运动,点P所走过的路程为x,△APQ的面积为y,写出y关于x的函数关系式,并求出定义域.

查看答案和解析>>

同步练习册答案