【题目】如图,在四棱锥中, , ∥,且 , , .
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(I)证明见解析;(Ⅱ).
【解析】试题分析:(1)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直进行论证,而线面垂直证明,往往需要多次利用线线垂直与线面垂直的转化,而线线垂直,有时可利用平几条件进行寻找与论证,如本题取中点E,利用平几知识得到四边形是矩形,从而得到,而易得,因此,进而有平面平面;(2)利用空间向量求线面角,首先建立空间直角坐标系:以A 为原点, 为轴, 为轴,建立空间直角坐标角系,设出各点坐标,利用方程组解出面的法向量,利用向量数量积求夹角,最后根据线面角与向量夹角互余得结论
试题解析:解:证明:(1)为中点, , ,且四边形是矩形, ,又平面,且,在平面中, 平面平面,又平面平面,平面平面.
(2)以A 为原点, 为轴, 为轴,建立空间直角坐标角系,
,
则
设平面的法向量,则,取,得,
设直线与平面所成的角为, ,
直线与平面所成的角的正弦值为.
科目:高中数学 来源: 题型:
【题目】已知函数,当时,取得极小值.
(1)求的值;
(2)记,设是方程的实数根,若对于定义域中任意的,.当且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
(3)设直线,曲线.若直线与曲线同时满足下列条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线与曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知动点M与到点N(3,0)的距离比动点M到直线x=-2的距离大1,记动圆M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若直线l与曲线C相交于A,B:两点,且(O为坐标原点),证明直线l经过定点H,并求出H点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑中,平面,,且,过点分别作于点,于点,连结,当的面积最大时,__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知棱长为3的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是侧面DCC1D1内(包括边界)的一个动点,且满足∠APD=∠MPC.则当三棱锥P﹣BCD的体积最大时,三棱锥P﹣BCD的外接球的表面积为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某消费品企业销售部对去年各销售地的居民年收入(即此地所有居民在一年内的收入的总和)及其产品销售额进行抽样分析,收集数据整理如下:
销售地 | A | B | C | D |
年收入x(亿元) | 15 | 20 | 35 | 50 |
销售额y(万元) | 16 | 20 | 40 | 48 |
(1)在图a中作出这些数据的散点图,并指出y与x成正相关还是负相关?
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程?
(3)若B地今年的居民年收入将增长20%,预测B地今年的销售额将达到多少万元?
回归方程系数公式:,.
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
用表中字母列举出所有可能的结果
设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,短轴长是2.
(1)求椭圆C的方程;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com