【题目】某校夏令营有3名男同学
和3名女同学
,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
用表中字母列举出所有可能的结果
设
为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件
发生的概率.
【答案】(1)15,(2)![]()
【解析】
试题(1)列举事件,关键是按一定顺序,做到不重不漏.从6名同学中随机选出2人参加知识竞赛的所有可能结果为
{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)
为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,其事件包含{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件
发生的概率![]()
试题解析:解(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件
发生的概率![]()
科目:高中数学 来源: 题型:
【题目】已知圆C过点
,且与圆
外切于点
,过点
作圆C的两条切线PM,PN,切点为M,N.
(1)求圆C的标准方程;
(2)试问直线MN是否恒过定点?若过定点,请求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两圆
(
圆心,半径
),与
(圆心
,半径
)不是同心圆,方程相减(消去二次项)得到的直线
叫做圆
与圆
的根轴;
(1)求证:当
与
相交于A,B两点时,
所在直线为根轴
;
(2)对根轴上任意点P,求证:
;
(3)设根轴
与
交于点H,
,求证:H分
的比
;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点
务极点,
轴正半轴为极轴建立极坐标系,曲线
,
(1)求曲线
,
的直角坐标方程;
(2)曲线
和
的交点为
,
,求以
为直径的圆与
轴的交点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司租赁甲、乙两种设备生产
、
两类产品,甲种设备每天能生产
类产品
件和
类产品
件,乙种设备每天能生产
类产品
件和
类产品
件.已知设备甲每天的租赁费为
元,设备乙每天的租赁费为
元,现该公司至少要生产
类产品
件,
类产品
件,求所需租赁费最少为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有
、
两个题目,该学生答对
、
两题的概率分别为
、
,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为
,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).
(1)求该学生被公司聘用的概率;
(2)设该学生应聘结束后答对的题目或问题的总个数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
与向量
的对应关系用
表示.
(1) 证明:对于任意向量
、
及常数m、n,恒有
;
(2) 证明:对于任意向量
,
;
(3) 证明:对于任意向量
、
,若
,则
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com