精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,短轴长是2.

(1)求椭圆C的方程;

(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当,求k的取值范围.

【答案】(1);(2)

【解析】

(1)由e,2b=2,a2b2c2构造方程组,解出ab即可得椭圆方程;(2)设l1的方程为ykx-1代入椭圆方程,求出M的坐标,可得|DM|,用代替k,可得|DN|,求出△DMN的面积S,可得,解不等式>可得k的取值范围.

(1)设椭圆C的半焦距为c,则由题意得又a2=b2+c2,解得a=2,b=1,

椭圆方程为+y2=1.

(2)由(1)知,椭圆C的方程为+y2=1,

所以椭圆C与y轴负半轴交点为D(0,-1).

因为l1的斜率存在,所以设l1的方程为y=kx-1.

代入+y2=1,得M

从而|DM|=.

用-代替k得|DN|=.

所以DMN的面积S=·×.

因为>,即>

整理得4k4-k2-14<0,解得-<k2<2,

所以0<k2<2,即-<k<0或0<k<.

从而k的取值范围为(-,0)∪(0,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, ,且 , .

)求证:平面平面

)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有两个题目,该学生答对两题的概率分别为,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).

1)求该学生被公司聘用的概率;

2)设该学生应聘结束后答对的题目或问题的总个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是减函数.

(1)试确定a的值;

(2)已知数列,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底,为常数且

(1)当时,讨论函数在区间上的单调性;

(2)当时,若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),以椭圆内一点为中点作弦,设线段的中垂线与椭圆相交于 两点.

(Ⅰ)求椭圆的离心率;

(Ⅱ)试判断是否存在这样的,使得 在同一个圆上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确命题的个数是(  )

①若2b=a+c,则abc成等差数列;

abc成等比数列的充要条件是b2=ac

③若数列{an2}是等比数列,则数列{an}也是等比数列;

④若,则

A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量与向量的对应关系用表示.

(1) 证明:对于任意向量及常数mn,恒有

(2) 证明:对于任意向量

(3) 证明:对于任意向量,若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中, 正确说法的个数是( )

①在用列联表分析两个分类变量之间的关系时,随机变量的观测值越大,说明“AB有关系的可信度越大

②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和 0.3

③已知两个变量具有线性相关关系,其回归直线方程为,若,则

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案