【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,短轴长是2.
(1)求椭圆C的方程;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当,求k的取值范围.
【答案】(1);(2)
【解析】
(1)由e=,2b=2,a2=b2+c2构造方程组,解出a,b即可得椭圆方程;(2)设l1的方程为y=kx-1代入椭圆方程,求出M的坐标,可得|DM|,用代替k,可得|DN|,求出△DMN的面积S,可得,解不等式>可得k的取值范围.
(1)设椭圆C的半焦距为c,则由题意得又a2=b2+c2,解得a=2,b=1,
∴椭圆方程为+y2=1.
(2)由(1)知,椭圆C的方程为+y2=1,
所以椭圆C与y轴负半轴交点为D(0,-1).
因为l1的斜率存在,所以设l1的方程为y=kx-1.
代入+y2=1,得M,
从而|DM|==.
用-代替k得|DN|=.
所以△DMN的面积S=·×=.
则=,
因为>,即>,
整理得4k4-k2-14<0,解得-<k2<2,
所以0<k2<2,即-<k<0或0<k<.
从而k的取值范围为(-,0)∪(0,).
科目:高中数学 来源: 题型:
【题目】某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有、两个题目,该学生答对、两题的概率分别为、,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).
(1)求该学生被公司聘用的概率;
(2)设该学生应聘结束后答对的题目或问题的总个数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(),以椭圆内一点为中点作弦,设线段的中垂线与椭圆相交于, 两点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)试判断是否存在这样的,使得, , , 在同一个圆上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确命题的个数是( )
①若2b=a+c,则a,b,c成等差数列;
②“a,b,c成等比数列”的充要条件是“b2=ac”;
③若数列{an2}是等比数列,则数列{an}也是等比数列;
④若,则
A.3B.2C.1D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量与向量的对应关系用表示.
(1) 证明:对于任意向量、及常数m、n,恒有;
(2) 证明:对于任意向量,;
(3) 证明:对于任意向量、,若,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中, 正确说法的个数是( )
①在用列联表分析两个分类变量与之间的关系时,随机变量的观测值越大,说明“A与B有关系”的可信度越大
②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则,的值分别是和 0.3
③已知两个变量具有线性相关关系,其回归直线方程为,若,,,则
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com