精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,正确命题的个数是(  )

①若2b=a+c,则abc成等差数列;

abc成等比数列的充要条件是b2=ac

③若数列{an2}是等比数列,则数列{an}也是等比数列;

④若,则

A.3B.2C.1D.0

【答案】C

【解析】

由等差中项的概念判断①;由充分必要条件的判断方法判断②;举例说明③④错误;

解:对于①,若,则,即成等差数列,故①正确;
对于②,由,不一定有成等比数列,反之,若成等比数列,则
成等比数列的必要不充分条件,故②错误;
对于③,若数列是等比数列,则数列也是等比数列错误,如124成等比数列,但不是等比数列,故③错误;
对于④,由,不一定有,如,故④错误.
∴正确命题的个数是1个,
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某消费品企业销售部对去年各销售地的居民年收入(即此地所有居民在一年内的收入的总和)及其产品销售额进行抽样分析,收集数据整理如下:

销售地

A

B

C

D

年收入x(亿元)

15

20

35

50

销售额y(万元)

16

20

40

48

1)在图a中作出这些数据的散点图,并指出yx成正相关还是负相关?

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程?

3)若B地今年的居民年收入将增长20%,预测B地今年的销售额将达到多少万元?

回归方程系数公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱台的底面是正三角形,平面平面.

(1)求证:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,短轴长是2.

(1)求椭圆C的方程;

(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解用户对其产品的满意度,从两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图和地区用户满意度评分的频数分布表.

地区用户满意度评分的频率分布直方图如下:

地区用户满意度评分的频数分布表如下:

1)在图中作出地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).

地区用户满意度评分的频率分布直方图

2)根据用户满意度评分,将用户的满意度分为三个等级:

公司负责人为了解用户满意度情况,从B地区调查8户,其中有两户满意度等级是不满意.求从这8户中随机抽取2户检查,抽到不满意用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型工厂招聘到一大批新员工.为了解员工对工作的熟练程度,从中随机抽取100人组成样本,统计他们每天加工的零件数,得到如下数据:

将频率作为概率,解答下列问题:

(1)当时,从全体新员工中抽取2名,求其中恰有1名日加工零件数达到240及以上的概率;

(2)若根据上表得到以下频率分布直方图,估计全体新员工每天加工零件数的平均数为222个,求的值(每组数据以中点值代替);

(3)在(2)的条件下,工厂按工作熟练度将新员工分为三个等级:日加工零件数未达200的员工为C级;达到200但未达280的员工为B级;其他员工为A级.工厂打算将样本中的员工编入三个培训班进行全员培训:A,B,C三个等级的员工分别参加高级、中级、初级培训班,预计培训后高级、中级、初级培训班的员工每人的日加工零件数分别可以增加20,30,50.现从样本中随机抽取1人,其培训后日加工零件数增加量为X,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面ABCD⊥平面CDEF,且四边形ABCD是梯形,四边形CDEF是矩形,∠BAD=∠CDA=90°,AB=AD=DE=CD,M是线段DE上的动点.

(1)试确定点M的位置,使BE∥平面MAC,并说明理由;

(2)在(1)的条件下,四面体E-MAC的体积为3,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等差数列,.

(1) 求数列的通项公式;

(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某校学生课外时间的分配情况,拟采用分层抽样的方法从该校的高一、高二、高三这三个年级中共抽取5个班进行调查,已知该校的高一、高二、高三这三个年级分别有1866个班级.

(Ⅰ)求分别从高一、高二、高三这三个年级中抽取的班级个数;

(Ⅱ)若从抽取的5个班级中随机抽取2个班级进行调查结果的对比,求这2个班级中至少有1个班级来自高一年级的概率。

查看答案和解析>>

同步练习册答案