精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求证:平面PAD⊥平面PAB;
(2)求三棱锥D-PAC的体积.

(1)证明:∵ABCD为矩形
∴AD⊥AB且AD∥BC…(1分)
∵BC⊥PB,
∴DA⊥PB且AB∩PB=B …(3分)
∴DA⊥平面PAB,
又∵DA?平面PAD,
∴平面PAD⊥平面PAB…(6分)
(2)∵VD-PAC=VP-DAC=VP-ABC=VC-PAB…(8分)
由(1)知DA⊥平面PAB,且AD∥BC∴BC⊥平面PAB…(10分)
∴VC-PAB=S△PAB•BC=×PA×ABsin∠PAB•BC=×1×2××1=…(12分)
分析:(1)由ABCD为矩形,,∠PBC=90°可证DA⊥平面PAB,再利用面面垂直的判定定理即可证得平面PAD⊥平面PAB;
(2)由VD-PAC=VP-DAC=VP-ABC=VC-PAB=S△PAB•BC即可求得答案.
点评:本题考查平面与平面垂直的判定,考查棱锥的体积,着重考查锥体体积轮换公式的应用,突出化归思想的考查,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案