精英家教网 > 高中数学 > 题目详情
如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)若EF平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.
(1)取AC的中点P,连接DP,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,
所以∠A=30°,△ADC是等腰三角形,所以DP⊥AC,DP=
3
,∠DCP=30°,∠PDC=60°,
又点E在线段AC上,CE=4.所以AE=2,EP=1,所以∠EDP=30°,
∴∠EDC=90°,∴ED⊥DC;
∵将△BCD沿CD折起,使得平面BCD⊥平面ACD,平面BDC∩平面EDC=DC
∴DE⊥平面BCD;
(2)若EF平面BDG,其中G为直线AC与平面BDG的交点,G为EC的中点,此时AE=EG=GC=2,
因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,
所以BD=
3
,DC=
32+(
3
)
2
=2
3

所以B到DC的距离h=
BD•BC
DC
=
3
×3
2
3
=
3
2

因为平面BCD⊥平面ACD,平面BDC∩平面EDC=DC,
所以B到DC的距离h就是三棱锥B-DEG的高.
三棱锥B-DEG的体积:V=
1
3
×S△DEG×h
=
1
3
×
2
3
×
1
3
×S
△ABC
×h
=
1
3
×
2
3
×
1
3
×
1
2
×3×6×
3
2
×
3
2
=
3
2

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(理)如图,四棱锥P-ABCD的底面是矩形,PA⊥面ABCD,PA=2
19
,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.
(1)求EF的长;
(2)证明:EF⊥PC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,点E满足
PE
=
1
3
PD

(1)求证:PA⊥平面ABCD;
(2)求二面角E-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是菱形,且∠DAB=60°,侧面PAD为正三角形,其所在的平面垂直于底面ABCD,求证:AD⊥PB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,AC⊥BC,D是棱AA1的中点,AA1=2AC=2BC=2a(a>0).
(1)证明:C1D⊥平面BDC;
(2)求三棱锥C-BC1D的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱ABCD-A1B1C1D1中,底面边长为2
2
,侧棱长为4,E、F分别是棱AB,BC的中点,EF与BD相交于G.
(1)求证:平面EFB1⊥平面BDD1B1
(2)求点B到平面B1EF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC上的射影H必在(  )
A.直线AB上B.直线BC上C.直线CA上D.△ABC内部

查看答案和解析>>

同步练习册答案