精英家教网 > 高中数学 > 题目详情
如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM.
证明:∵AB是圆的直径,M是圆周上异于A、B的任意一点,
∴AM⊥BM,
∵PA⊥平面ABM,BM?平面ABM,
∴PA⊥BM.
又∵PA∩AM=A,PA?平面PAM,AC?平面PAM,
∴BM⊥平面PAM,
又∵AN?平面PAM,
∴AN⊥BM,
又∵AN⊥PM,BM∩PM=M.
∴AN⊥平面PBM.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,正方体AC1的棱长为1,连接AC1,交平面A1BD于H,则以下命题中,错误的命题是(  )
A.AC1⊥平面A1BD
B.H是△A1BD的垂心
C.AH=
3
3
D.直线AH和BB1所成角为45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点△DAB≌△DCB,EA=EB=AB=1,PA=
3
2
,连接CE并延长交AD于F.
(1)求证:AD⊥平面CFG;
(2)求三棱锥P-ABD外接球的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,四边形ABCD是正方形,FA⊥平面ABCD,EFBC,FA=2,AD=3,∠ADE=45°,点G是FA的中点.
(1)求证:EG⊥平面CDE;
(2)在棱BC是否存在点M,使GM平面CDE,若存在,找出点M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?
(3)若存在,求线段AS的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别为A1B1、A1A的中点.
(Ⅰ)求cos<
BA1
CB1
>的值;
(Ⅱ)求证:BN⊥平面C1MN;
(Ⅲ)求点B1到平面C1MN的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体ABCD-A1B1C1D1的棱长为2,P、Q分别是BC、CD上的动点,且|PQ|=
2
,建立如图所示的坐标系.
(1)确定P、Q的位置,使得B1Q⊥D1P;
(2)当B1Q⊥D1P时,求二面角C1-PQ-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)若EF平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=3
2

(Ⅰ)求证:OM平面ABD;
(Ⅱ)求证:平面ABC⊥平面MDO;
(Ⅲ)求三棱锥M-ABD的体积.

查看答案和解析>>

同步练习册答案