精英家教网 > 高中数学 > 题目详情
四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?
(3)若存在,求线段AS的长;若不存在,请说明理由.
∵MD⊥平面ABCD,则MD⊥DA,MD⊥DC,
又∵底面ABCD为正方形,∴DA⊥DC,
故以点D为坐标原点,DA为x轴,DC为y轴,DM为z轴,如图建立空间直角坐标系.
则各点的坐标D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),E,(
1
2
,1,0),M(0,0,1),N(1,1,1),

(1)∴
NE
=(-
1
2
,0,-1),
AM
=(-1,0,1)
设异面直线NE与AM所成角为θ
则cosθ=|
NE
AM
|
NE
|•|
AM
|
|
=
1
2
5
2
2
=
10
10

故异面直线NE与AM所成角的余弦值为
10
10

(2)由正方体的几何特征,我们易得PC⊥平面AMN
连接PB,交AN与S,连接SE,则易得S为PB的中点,又由E为BC的中点
则SEPC
∴ES⊥平面AMN
即线段AN上存在一点S为AN的中点,满足ES⊥平面AMN
(3)由(2)得,S的坐标为(1,
1
2
1
2

则线段AS的长d=
1
2
AN
=
2
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

△ABC中,∠ABC=90°,PA⊥平面ABC,则图中直角三角形的个数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,ABC,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,PA⊥平面ABC,则四面体P-ABC的四个面中,直角三角形的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.
(1)求证:PA平面MBD;
(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知α∩β=CD,EA⊥α,垂足为A,EB⊥β,垂足为B,求证CD⊥AB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是菱形,且∠DAB=60°,侧面PAD为正三角形,其所在的平面垂直于底面ABCD,求证:AD⊥PB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面α,β,γ,且平面α平面β,平面α⊥平面γ;
求证:平面β⊥平面γ

查看答案和解析>>

同步练习册答案