精英家教网 > 高中数学 > 题目详情
如图正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.
(1)求证:PA平面MBD;
(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.
(1)连结AC交BD于O点,连结OM
∵四边形ABCD为正方形,∴O为AC的中点
因此OM是△PAC的中位线,可得PAOM
∵PA?平面MBD,OM?平面MBD,
∴PA平面MBD;
(2)取AB的中点N,连结PN、CN
∵正方形ABCD中,Q、N分别为AD、AB的中点
∴Rt△ABQ≌△BCN,可得CN⊥BQ
∵等边△PAD中,Q是AD中点,∴PQ⊥AD
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,
∴PQ⊥底面ABCD,
∵CN?底面ABCD,∴CN⊥PQ
∵BQ、PQ是平面PQB内的相交直线,∴CN⊥平面PQB
∵CN?平面PCN,∴平面PCN⊥平面PQB
即在线段AB上存在AB的中点N,使得平面PCN⊥平面PQB.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB、PB的中点.
(1)求证:DE平面PAC;
(2)求证:AB⊥PB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图(1)在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1,G2,G3三点重合于G,下面结论成立的是(  )
A.SG⊥平面EFGB.SD⊥平面EFGC.GF⊥平面SEFD.DG⊥平面SEF

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面
ABCD.
(Ⅰ)证明:PA⊥BD
(Ⅱ)设PD=AD=1,求棱锥D-PBC的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC所在平面外一点P,分别连接PA、PB、PC,则这四个三角形中直角三角形最多有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?
(3)若存在,求线段AS的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,点C为圆O上异于A、B的一点,PA⊥平面ABC,点A在PB、PC上的射影分别为点E、F.
(1)求证:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱锥C-PAB的体积与此三棱锥的外接球(即点P、A、B、C都在此球面上)的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠ABC=60°,点M是棱PC的中点,PA⊥平面ABCD,AC、BD交于点O.
(1)已知:PA=
2
,求证:AM⊥平面PBD;
(2)若二面角M-AB-D的余弦值等于
21
7
,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,E,F分别为AC,BC的中点.
(1)求证:EF平面PAB;
(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求证:平面PEF⊥平面PBC.

查看答案和解析>>

同步练习册答案