精英家教网 > 高中数学 > 题目详情
如图,AB为圆O的直径,点C为圆O上异于A、B的一点,PA⊥平面ABC,点A在PB、PC上的射影分别为点E、F.
(1)求证:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱锥C-PAB的体积与此三棱锥的外接球(即点P、A、B、C都在此球面上)的体积之比.
证明:(1)∵PA⊥面ABC,BC?面ABC,
∴BC⊥PA,又AB是圆O的直径,∴BC⊥AC
所以BC⊥面PAC,又因AF?面PAC,
所以AF⊥BC,又因AF⊥PC,
所以AF⊥面PBC,又因PB?面PBC,
所以PB⊥AF,又因PB⊥AE,所以PB⊥面AFE.(5分)
(2)VC-PAB=VP-ABC=
1
3
S△ABC•PA=
1
3
×
1
2
×AC•BC•PA=2
3

取PB的中点M,由直角三角形性质得,PM=AM=BM=CM,故三棱锥的外接球球心为M,
其半径为
1
2
PB=
5
2
,所以V球M=
4
3
π(
5
2
)3=
6
,体积之比为
12
3
.(10分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)记三棱锥P-ABD体积为V1,四棱锥P-BDEF体积为V2.求当PB取得最小值时的V1:V2值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD
(1)证明:AB⊥平面VAD;
(2)求面VAD与面VDB所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.
(1)求证:PA平面MBD;
(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为2的正方形,SA=2,AC与BD相交于点O.
(1)证明:SO⊥BD;
(2)求三棱锥O-SCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知α∩β=CD,EA⊥α,垂足为A,EB⊥β,垂足为B,求证CD⊥AB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,BC是Rt△ABC的斜边,AP⊥平面ABC,连接PB、PC,作PD⊥BC于D,连接AD,则图中共有直角三角形______个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.
(Ⅰ)求证:MN⊥平面A1BC;
(Ⅱ)求直线BC1和平面A1BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=BC,点D为AB的中点.
(1)求证:AC1平面CDB1
(2)求证:平面CDB1⊥平面ABB1A1

查看答案和解析>>

同步练习册答案