精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.
(Ⅰ)求证:MN⊥平面A1BC;
(Ⅱ)求直线BC1和平面A1BC所成角的大小.
证明:(Ⅰ)由已知BC⊥AC,BC⊥CC1
所以BC⊥平面ACC1A1.连接AC1,则BC⊥AC1
由已知,侧面ACC1A1是矩形,所以A1C⊥AC1
又BC∩A1C=C,所以AC1⊥平面A1BC.
因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M是AB1的中点.
又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MNAC1
故MN⊥平面A1BC.
(Ⅱ)因为AC1⊥平面A1BC,设AC1与A1C相交于点D,
连接BD,则∠C1BD为直线BC1和平面A1BC所成角.
设AC=BC=CC1=a,则C1D=
2
2
a,BC1=
2
a.
在Rt△BDC1中,sin∠C1BD=
C1D
BC1
=
1
2

所以∠C1BD=30°,故直线BC1和平面A1BC所成的角为30°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图(1)在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1,G2,G3三点重合于G,下面结论成立的是(  )
A.SG⊥平面EFGB.SD⊥平面EFGC.GF⊥平面SEFD.DG⊥平面SEF

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,点C为圆O上异于A、B的一点,PA⊥平面ABC,点A在PB、PC上的射影分别为点E、F.
(1)求证:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱锥C-PAB的体积与此三棱锥的外接球(即点P、A、B、C都在此球面上)的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠ABC=60°,点M是棱PC的中点,PA⊥平面ABCD,AC、BD交于点O.
(1)已知:PA=
2
,求证:AM⊥平面PBD;
(2)若二面角M-AB-D的余弦值等于
21
7
,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分别为SB、SD中点,求证:
(1)DB平面AMN.
(2)SC⊥平面AMN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知∠BAC在平面α内,P∉α,∠PAB=∠PAC,求证:点P在平面α上的射影在∠BAC的平分线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求BE与平面PAC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,E,F分别为AC,BC的中点.
(1)求证:EF平面PAB;
(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求证:平面PEF⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:
(1)PA平面BDE;
(2)平面PAC⊥平面PBD.

查看答案和解析>>

同步练习册答案