精英家教网 > 高中数学 > 题目详情
已知四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为2的正方形,SA=2,AC与BD相交于点O.
(1)证明:SO⊥BD;
(2)求三棱锥O-SCD的体积.
(1)证明:∵底面ABCD是正方形,∴AC⊥BD,
又侧棱SA⊥底面ABCD,∴SA⊥BD,AC∩SA=A,
∴BD⊥平面SAC,SO?平面SAC,∴SO⊥BD;
(2)∵底面正方形的边长为2,∴S△OCD=
1
4
×2×2=1,
∵SA⊥底面ABCD,∴SA为三棱锥O-SCD的高,SA=2.
∴VO-SCD=VS-OCD=
1
3
×1×2=
2
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,ABCD-A1B1C1D1为正方体,下面结论中正确的结论是______.(把你认为正确的结论都填上)
①BD平面CB1D1
②AC1⊥平面CB1D1
③过点A1与异面直线AD和CB1成90°角的直线有2条.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A1D1的中点.
(Ⅰ)求证:DE⊥平面BCE;
(Ⅱ)求证:AF平面BDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC所在平面外一点P,分别连接PA、PB、PC,则这四个三角形中直角三角形最多有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面是边长为2的正方形,PA⊥底面ABCD,PA=2
2
,求直线PA与底面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,点C为圆O上异于A、B的一点,PA⊥平面ABC,点A在PB、PC上的射影分别为点E、F.
(1)求证:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱锥C-PAB的体积与此三棱锥的外接球(即点P、A、B、C都在此球面上)的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方形ABCD和矩形ACEF所在的平面相互垂直,已知AB=2,AF=
2

(I)求证:EO⊥平面BDF;
(II)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分别为SB、SD中点,求证:
(1)DB平面AMN.
(2)SC⊥平面AMN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB,CD均为圆O的直径,CE⊥圆O所在的平面,BFCE.求证:
(1)平面BCEF⊥平面ACE;
(2)直线DF平面ACE.

查看答案和解析>>

同步练习册答案