精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A1D1的中点.
(Ⅰ)求证:DE⊥平面BCE;
(Ⅱ)求证:AF平面BDE.
(Ⅰ)证明:∵BC⊥侧面CDD1C1,DE?侧面CDD1C1
∴DE⊥BC,(3分)
在△CDE中,CD=2a,CE=DE=
2
a,则有CD2=CE2+DE2
∴∠DEC=90°,
∴DE⊥EC,(6分)
又BC∩EC=C
∴DE⊥平面BCE.(7分)
(Ⅱ)证明:连EF、A1C1,连AC交BD于O,
∵EF
.
.
1
2
A1C1
,AO
.
.
1
2
A1C1

∴四边形AOEF是平行四边形,(10分)
∴AFOE(11分)
又∵OE?平面BDE,AF?平面BDE,
∴AF平面BDE.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,O是长方体ABCD-A1B1C1D1底面对角线AC与BD的交点,求证:B1O平面A1C1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角梯形ABCD中,∠ABC=∠BAD=90°,BE⊥平面ABCD,AB=BC=BE=2AD=2.
(Ⅰ)求异面直线DE与AC所成角的大小;
(Ⅱ)在线段CE上是否存在点F,使平面BDF⊥平面ADE,若存在,确定点F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角形的正方形)如下,E是侧棱PC上的动点.
(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置都有BD⊥AE,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=3MB,线段CE上是否存在一点N,使得MN平面DAE?若存在,求出CN的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD
(1)证明:AB⊥平面VAD;
(2)求面VAD与面VDB所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求多面体B1C1ABC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为2的正方形,SA=2,AC与BD相交于点O.
(1)证明:SO⊥BD;
(2)求三棱锥O-SCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA平面BDE;
(2)求证:平面BED⊥平面SAC.

查看答案和解析>>

同步练习册答案