精英家教网 > 高中数学 > 题目详情
7.函数f(x)=lnx-x2的单调增区间为(0,$\frac{\sqrt{2}}{2}$].

分析 求出函数的定义域,以及函数的导数f′(x),解不等式f′(x)>0即可得到结论.

解答 解:函数的定义域为(0,+∞),
则函数的导数f′(x)=$\frac{1}{x}-2x$=$\frac{1-2{x}^{2}}{x}$,
由f′(x)>0得1-2x2>0,即x2<$\frac{1}{2}$,
解得0<x<$\frac{\sqrt{2}}{2}$,
即函数的单调递增区间为(0,$\frac{\sqrt{2}}{2}$],
故答案为:(0,$\frac{\sqrt{2}}{2}$]

点评 本题主要考查函数单调区间的求解,求出函数的导数,利用函数单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设f(x)=$\frac{x-1}{x+1}$,f($\frac{b}{a}$)+f($\frac{a}{b}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,⊙O和⊙O′都经过A,B两点,AC是⊙O′的切线,交⊙O于点C,AD是⊙O的切线,交⊙O′于点D,若BC=2,BD=6,则AB的长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(ax-b)ex(a≠0).
①若f(x)≥-b恒成立,求f(1)的值;
②f(x)在(a,+∞)是单调减函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“对任意x∈(0,$\frac{π}{2}$),ksinxcosx<x”是“k<1”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|=5,向量$\overrightarrow{c}$-$\overrightarrow{a}$,$\overrightarrow{c}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{c}$-$\overrightarrow{a}$|=2$\sqrt{3}$,则$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{c}$-$\overrightarrow{b}$的夹角正弦值为$\frac{3}{5}$,|$\overrightarrow{c}$|=4+$\sqrt{3}$或$\sqrt{37-16\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{kx+2,}&{x≤0}\\{1nx,}&{x>0}\end{array}\right.$(k∈R),若函数y=|f(x)|+k有三个零点,则实数k的取值范围是(  )
A.k≤2B.-1<k<0C.-2≤k<-1D.k≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.建一个容积为V的长方体水池,如果底为正方形,且其单位面积的造价是四周单位面积造价的3倍,试将造价F表示成池底面边长x的函数,并确定其定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设A.B是曲线C:y=$\sqrt{3}$x+$\frac{2}{x+1}$上不同的两点.且曲线在A,B两点处的切线都与直线AB垂直.
(1)求证直线AB过点(-1,-$\sqrt{3}$);
(2)求直线AB的方程.

查看答案和解析>>

同步练习册答案