精英家教网 > 高中数学 > 题目详情
如图,P是圆O外一点,PD为切线,D为切点,割线PEF经过圆心O,若PF=12,PD=4
3
,求线段DE的长度.
考点:与圆有关的比例线段
专题:立体几何
分析:连接OD,由于PD为切线,D为切点,O为圆心,由切割线定理,求出PE,然后判断三角形的形状求出DE即可.
解答: (本小题满分10分)选修4-1:几何证明选讲
解:连接OD,由于PD为切线,D为切点,O为圆心,所以OD⊥PD.
由切割线定理知:PD2=PE•PF,从而PE=
PD2
PF
=4
,…(5分)
所以OE=OF=OD=4,又PO=8,在Rt△PDO中,易知∠EOD=60°,故△EDO为等边三角形,所以DE=4.…(10分)
点评:本题考查切割线定理的应用,三角形的形状的判断,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
mx
1+|x|
(其中|m|>1),区间M=[a,b](a<b),集合N={y|y=f(x),x∈M)},则使M=N成立的实对数(a,b)有
 
对.

查看答案和解析>>

科目:高中数学 来源: 题型:

设方阵A满足A2-A-2E=0,证明:A和A+2E均可逆,并求A和A+2E的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形S-ABC中,SA=SB=SC,三角形ABC为等边三角形,M,N分别是AB,SC的中点.
(1)求SM与BN的所成角;
(2)连接CM,过N作SM的 平行线NQ,交CM与Q,连接BQ,求∠BNQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上任意一点,过点P的直线与两渐近线分别交于P1,P2,设λ=
P1P
PP2
,求证:S△OP1P2=
(1+λ)2
4|λ|
ab.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.
(1)求这一天6~14时的最大温差;
(2)写出这段曲线的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面上,已知
AB1
AB2
,|
OB1
|=|
OB2
|=1,
AP
=
AB1
+
AB2
,若|
OP
|<
1
2
,则|
OA
|的取值范围是(  )
A、(0,
5
2
]
B、(
5
2
7
2
)
C、(
5
2
2
]
D、(
7
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

一元二次方程kx2+3kx+k-3=0有一个正根和一个负根,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2
1+x
1-x
是(  )
A、偶函数
B、奇函数
C、既是奇函数又是偶函数
D、既不是奇函数又不是偶函数

查看答案和解析>>

同步练习册答案