精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.若sin B•sin C=sin2A,则△ABC的形状是(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

分析 b2+c2=a2+bc,利用余弦定理可得cosA=$\frac{1}{2}$,可得$A=\frac{π}{3}$.由sin B•sin C=sin2A,利正弦定理可得:bc=a2,代入b2+c2=a2+bc,可得b=c.

解答 解:在△ABC中,∵b2+c2=a2+bc,∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),∴$A=\frac{π}{3}$.
∵sin B•sin C=sin2A,
∴bc=a2
代入b2+c2=a2+bc,∴(b-c)2=0,解得b=c.
∴△ABC的形状是等边三角形.
故选:C.

点评 本题考查了正弦定理余弦定理、等边三角形的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=-x2-2x,现已画出函数f(x)在y轴左侧的图象,如图所示,根据图象:
(1)画出函数f(x)在y轴右侧图象,并写出函数f(x)(x∈R)的单调递增区间;
(2)写出函数f(x)(x∈R)的解析式;
(3)若函数g(x)=f(x)-2ax+2(x∈[0,2]),求函数g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四边形ABCD为正方形,PD⊥平面ABCD,EC∥PD.且PD=2EC=$\sqrt{2}$.
(1)求证:AC∥平面PBE;
(2)若AD=1,求直线PB与底面ABCD所成角的大小;
(3)若AD=1,求四棱锥B-PDCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U={1,2,3,4,5,6,7,8},A⊆U,B⊆U,且满足A∩B={3},(∁UB)∩A={1,2},(∁UA)∩B={4,5},则∁U(A∪B)=(  )
A.{6,7,8}B.{7,8}C.{5,7,8}D.{5,6,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{lna-lnx}{x}$在[1,+∞)上为增函数,则实数a的取值范围是(  )
A.0<a≤$\frac{1}{e}$B.a$≥\frac{1}{e}$C.$\frac{1}{{e}^{2}}$<a≤$\frac{1}{e}$D.a≥$\frac{1}{{e}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x>0,y>0,且满足x+$\frac{y}{2}$-$\frac{1}{x}$-$\frac{8}{y}$=8,则2x+y的最小值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将5个小球放到3个盒子中,在下列条件下,各有多少种投放方法?
①小球不同,盒子不同,盒子不空;
 ②小球不同,盒子不同,盒子可空;
③小球不同,盒子相同,盒子不空;    
④小球不同,盒子相同,盒子可空;
⑤小球相同,盒子不同,盒子不空;   
⑥小球相同,盒子不同,盒子可空;
⑦小球相同,盒子相同,盒子不空;
⑧小球相同,盒子相同.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,正方形ABCD的边长为2$\sqrt{2}$,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,且FO⊥平面ABCD,FO=$\sqrt{3}$.
(1)求BF与平面ABCD所成的角的正切值;
(2)求三棱锥O-ADE的体积;
(3)求证:平面AEF⊥平面BCF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,则AB的长为(  )
A.3B.4C.4.5D.5

查看答案和解析>>

同步练习册答案