精英家教网 > 高中数学 > 题目详情
14.已知x>0,y>0,且满足x+$\frac{y}{2}$-$\frac{1}{x}$-$\frac{8}{y}$=8,则2x+y的最小值为18.

分析 x>0,y>0,且满足x+$\frac{y}{2}$-$\frac{1}{x}$-$\frac{8}{y}$=8,化为:$\frac{2x+y}{2}$=8+$\frac{1}{x}+\frac{16}{2y}$,令2x+y=t>0,则$\frac{(2x+y)^{2}}{2}$=8(2x+y)+(2x+y)$(\frac{1}{x}+\frac{16}{2y})$,利用基本不等式的性质化简整理解出即可得出.

解答 解:∵x>0,y>0,且满足x+$\frac{y}{2}$-$\frac{1}{x}$-$\frac{8}{y}$=8,
化为:$\frac{2x+y}{2}$=8+$\frac{1}{x}+\frac{16}{2y}$,
令2x+y=t>0,则$\frac{(2x+y)^{2}}{2}$=8(2x+y)+(2x+y)$(\frac{1}{x}+\frac{16}{2y})$=8(2x+y)+2+8+$\frac{y}{x}$+$\frac{16x}{y}$≥8(2x+y)+10+2$\sqrt{\frac{y}{x}×\frac{16x}{y}}$=8(2x+y)+18,
∴t2-16t-36≥0,
解得t≥18,即2x+y≥18,当且仅当y=4x=12时取等号.
故答案为:18.

点评 本题考查了基本不等式的性质、不等式的解法,考查了变形推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.原点到直线x+$\sqrt{3}$y-2=0的距离为(  )
A.$\frac{1}{2}$B.0C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x,y满足约束条件$\left\{\begin{array}{l}2x+5y\;≥10\\ 2x-3y\;≥-6\\ 2x+y\;≤10\end{array}\right.$,则 $\frac{y+1}{x+1}$ 的取值范围[$\frac{1}{6}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,f(x)+xf′(x)>0(其中f′(x)为f(x)的导函数),则f(x)>0的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.若sin B•sin C=sin2A,则△ABC的形状是(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设a、x∈R,且复数x2+ax+1+3i恒不是纯虚数,则实数a的范围是(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边中线的交点,若$\overrightarrow{GA}$+(a+b)$\overrightarrow{GB}$+c$\overrightarrow{GC}$=$\overrightarrow{0}$,且$\frac{1}{a}$+$\frac{2}{b}$≥cos2x-msinx(x∈R)恒成立,则实数m的取值范围为(  )
A.(-4,4)B.(4,4+2$\sqrt{2}$]C.[-4-2$\sqrt{2}$,-4)D.[-4-2$\sqrt{2}$,4+2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-lnx.
(1)求函数y=f(x)的单调区间;
(2)设g(x)=x-t,若函数h(x)=g(x)-f(x)在[$\frac{1}{e}$,e]上(这里e≈2.718)恰有两个不同的零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,PA⊥面ABCD,点Q在棱PA上,且PA=4PQ=4,AB=2,CD=1,AD=$\sqrt{2}$,∠CDA=∠BAD=$\frac{π}{2}$,M,N分别是PD,PB的中点.
(1)求证:MQ∥面PCB;
(2)求截面MCN与底面ABCD所成的锐二面角的大小.

查看答案和解析>>

同步练习册答案