精英家教网 > 高中数学 > 题目详情
14.F1、F2是椭圆$\frac{x^2}{25}$+$\frac{y^2}{16}$=1的两焦点,AB是过F2的弦,则△ABF1的周长为20.

分析 根据椭圆的方程算出a=5,由椭圆的定义得到|AF1|+|AF2|=|BF1|+|BF2|=2a=10,由此将△ABF1的周长分成|AF1|+|AF2|、|BF1|+|BF2|两部分,即可得到所求△ABF1的周长

解答 解:∵椭圆的方程为$\frac{x^2}{25}$+$\frac{y^2}{16}$=1,
∴a=5,
根据椭圆的定义,得|AF1|+|AF2|=|BF1|+|BF2|=2a=10,
∴△ABF1的周长|AF1|+|BF1|+|AB|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=20,
故答案为:20.

点评 本题给出椭圆经过右焦点的弦AB与左焦点F1构成的三角形,求△ABF1的周长.着重考查了椭圆的定义与标准方程的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆c1:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1的左、右焦点分别为F1,F2,过点F1作垂直于x轴的直线l1,直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M
(1)求点M的轨迹C2的方程
(2)过点F2作两条互相垂直的直线AC,BD,且分别交椭圆于A,B,C,D,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设0≤x≤2,则函数f(x)=$\frac{1}{2}$×4x-3•2x+5的最大值是$\frac{5}{2}$,最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥x\\ 4x+3y≤12\end{array}\right.$,则$\frac{2y-x+1}{x+1}$的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知cosαcosβ=cosα+cosβ+3,则sin(α+β)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在锐角三角形ABC中,a,b,c是角A,B,C的对边,已知(b2+c2-a2)tanA=$\sqrt{3}$bc
(1)求角A的大小,
(2)若f(B)=sinBcosB-$\sqrt{3}{cos^2}B+\sqrt{3}$,求f(B)范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,曲线AC的方程为$\frac{x^2}{9}+\frac{y^2}{4}$═1(0≤x≤3,0≤y≤2),为估计椭圆$\frac{x^2}{9}+\frac{y^2}{4}$═1的面积,现采用随机模拟方式产生x∈(0,3),y∈(0,2)的200个点(x,y),经统计,落在图中阴影部分的点共157个,则可估计椭圆$\frac{x^2}{9}+\frac{y^2}{4}$═1的面积是18.84.(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,短轴一个端点到右焦点的距离为2,直线l过点P(-1,0)且与曲线C交于A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)△AOB的面积是否存在最大值,若存在,求出△AOB的面积,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线x+2y-3=0,kx+y-1=0,x轴的正半轴和y轴的正半轴所围成的四边形有外接圆,且k<0,则实数k的值为-2.

查看答案和解析>>

同步练习册答案