精英家教网 > 高中数学 > 题目详情
6.如图,曲线AC的方程为$\frac{x^2}{9}+\frac{y^2}{4}$═1(0≤x≤3,0≤y≤2),为估计椭圆$\frac{x^2}{9}+\frac{y^2}{4}$═1的面积,现采用随机模拟方式产生x∈(0,3),y∈(0,2)的200个点(x,y),经统计,落在图中阴影部分的点共157个,则可估计椭圆$\frac{x^2}{9}+\frac{y^2}{4}$═1的面积是18.84.(精确到0.01)

分析 根据几何概率计算公式可得:S阴影=$\frac{157}{200}•{S}_{矩形OABC}$,可得椭圆$\frac{x^2}{9}+\frac{y^2}{4}$═1的面积S=4S阴影

解答 解:根据几何概率计算公式可得:落在图中阴影部分的点的概率P=$\frac{157}{200}$.
∴S阴影=$\frac{157}{200}•{S}_{矩形OABC}$=$\frac{157}{200}×3×2$=4.71,
∴椭圆$\frac{x^2}{9}+\frac{y^2}{4}$═1的面积S=4S阴影=4×4.71=18.84.
故答案为:18.84.

点评 本题考查了椭圆的标准方程及面积计算公式、几何概率计算公式、矩形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的通项an=2n+1,由bn=$\frac{{a}_{1}+{a}_{2}+{a}_{3}+…+{a}_{n}}{n}$所确定的数列{bn}的前n项和是Sn=$\frac{1}{2}{n}^{2}$+$\frac{5}{2}n$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过椭圆$\frac{{x}^{2}}{2}$+y2=1上的一个动点P向x轴引垂线交于M,延长MP到N(P在MN中间)使$\overrightarrow{MP}$=λ$\overrightarrow{MN}$(λ>0,λ≠1),所得N点轨迹与椭圆有相同的离心率,则λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.F1、F2是椭圆$\frac{x^2}{25}$+$\frac{y^2}{16}$=1的两焦点,AB是过F2的弦,则△ABF1的周长为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+y-4≤0}\\{x+y≥0}\end{array}\right.$,则3x+2y的最大值为(  )
A.-1B.4C.$\frac{22}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x,y满足条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=$\frac{x+y+2}{x+3}$的最小值(  )
A.-$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{13}{6}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{12}-\frac{y^2}{4}=1$的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是(  )
A.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$B.$\left?{-\sqrt{3},\sqrt{3}}\right?$C.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$D.$({-\sqrt{3},\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在直三棱柱A1B1C1-ABC中,$∠BAC=\frac{π}{2}$,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为(  )
A.[$\frac{\sqrt{5}}{5}$,1)B.[$\frac{\sqrt{5}}{5}$,1]C.($\frac{2\sqrt{5}}{5}$,1)D.[$\frac{2\sqrt{5}}{5}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα+sinα}\\{y=2\sqrt{3}sinαcosα-2si{n}^{2}α+2}\end{array}\right.$(α为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立坐标系,曲线N的极坐标方程为ρsin($θ+\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(t为参数).
(1)求曲线M的普通方程和曲线N的直角坐标方程;
(2)若曲线N与曲线M有公共点,求t的取值范围.

查看答案和解析>>

同步练习册答案