精英家教网 > 高中数学 > 题目详情
4.向量$\overrightarrow a$=(2,0),$\overrightarrow b$=(x,y),若$\overrightarrow b$与$\overrightarrow b$-$\overrightarrow a$的夹角为30°,则$|{\overrightarrow b}|$的最大值为(  )
A.2B.2$\sqrt{3}$C.4D.$\frac{{4\sqrt{3}}}{3}$

分析 由向量的运算法则结合题意构造三角形,由正弦定理和三角函数的值域可得答案.

解答 解:由题意和向量加减的三角形法则可得$\overrightarrow{a}$,$\overrightarrow b$与$\overrightarrow b$-$\overrightarrow a$构成三角形,
对应的角分别为A、B、C,则A=30°,
由正弦定理可得$\frac{|\overrightarrow{b}|}{sinB}$=$\frac{|\overrightarrow{a}|}{sinA}$,
∴$|{\overrightarrow b}|$=$\frac{|\overrightarrow{a}|}{sinA}$sinB=2|$\overrightarrow{a}$|sinB=4sinB≤4
故选:C.

点评 本题考查平面向量的夹角,转化为三角形的知识是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点在直线y=2x-10上,则双曲线的方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若随机变量X~B(10,$\frac{2}{3}$),则方差DX=$\frac{20}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果角α的终边过点(2sin$\frac{π}{6}$,-2cos$\frac{π}{6}$),则sinα的值等于(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.假设在3.0秒内的任何时间,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小1.0秒,手机就会受到干扰,则手机受到干扰的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{5}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设点P是曲线:y=x3-$\sqrt{3}$x+b(b为实常数)上任意一点,P点处切线的倾斜角为α,则α的取值范围是(  )
A.[$\frac{2}{3}$π,π)B.($\frac{π}{2}$,$\frac{5}{6}$π]C.[0,$\frac{π}{2}$]∪[$\frac{5π}{6}$,π)D.[0,$\frac{π}{2}$]∪[$\frac{2π}{3}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设复数z=x+yi(x,y∈R)且|z+i|+|z-i|=4,则点(x,y)的轨迹方程是$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集U=R,集合A={x|2≤x<5},集合B={x|y=$\sqrt{x-3}$+lg(9-x)},集合C={y|y=3x,x∈(-1,a]}
(1)求A∩(∁UB);
(2)若A∩C=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.与点A(1,2)距离为1,同时与点B(3,-1)距离为2的直线的条数为(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

同步练习册答案