精英家教网 > 高中数学 > 题目详情
18.(1)已知0<x<$\frac{π}{2}$,证明:sinx<x<tanx;
(2)求证:函数f(x)=$\frac{sinx}{x}$在x∈(0,π)上为减函数.

分析 (1)构造函数f(x)=x-sinx,g(x)=tanx-x,求导,即可证明;
(2)直接求导,讨论$0<x<\frac{π}{2},\frac{π}{2}≤x<π$两种情况(利用第一问结论).

解答 证明:(1)当0<x<$\frac{π}{2}$时,令f(x)=x-sinx,g(x)=tanx-x,
则f′(x)=1-cosx>0,g′(x)=$\frac{1}{co{s}^{2}x}$-1>0,
故f(x)和g(x)在(0,$\frac{π}{2}$)上单调递增,
故f(x)>f(0)=0,g(x)>g(0)=0,
∴x>sinx,且tanx>x,∴sinx<x<tanx.
(2)f(x)=$\frac{sinx}{x}$直接求导,f′(x)=$\frac{xcosx-sinx}{{x}^{2}}$
0<x<$\frac{π}{2}$,x<tanx,∴xcosx<sinx,∴xcosx-sinx<0,∴f′(x)<0,在x∈(0,$\frac{π}{2}$)上为减函数.
$\frac{π}{2}$≤x<π,xcosx≤0,sinx>0,∴xcosx-sinx<0,∴f′(x)<0,在x∈[$\frac{π}{2}$,π)上为减函数.
综上所述,函数f(x)=$\frac{sinx}{x}$在x∈(0,π)上为减函数.

点评 本题考查利用导数的符号研究函数的单调性,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设集合A={(x,y)|x2+$\frac{{y}^{2}}{4}$=1},B={(x,y)|y=2x},则A∩B的子集的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,由O⊙的$\widehat{AB}$的中点C引弦CD、CE,分别与AB相交于F、G.求证:DG•EF=FD•GE+DE•FG.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.化简:$\sqrt{1-2sin(π-2)•cos(π-2)}$得sin2+cos2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=log2x在x∈[1,4]上满足f(x)≤m2-3am+2恒成立,则当a∈[-1,1]时,实数m的取值范围是(  )
A.[-$\frac{1}{3}$,$\frac{1}{3}$]B.(-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞)∪{0}C.[-3,3]D.(-∞,-3]∪[3,+∞)∪{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在极坐标系中,直线l的极坐标方程为θ=$\frac{π}{3}$(ρ∈R),以极坐标为原点,极轴为x轴非负半轴建立直角坐标系,圆C的参数方程为$\left\{\begin{array}{l}{x=cosθ+2}\\{y=sinθ}\end{array}\right.$.
(I)写出直线l的直角坐标方程;
(Ⅱ)设点P在直线l上,过点P作圆C的切线,切点为M,N,当∠MPN最大时,求点P的直角坐标系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$)(2$\sqrt{1-{x}^{2}}$-1),若关于x的方程f(x)=m有实数解,则实数m的取值范围为-$\sqrt{2}$≤m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知各项数列{an}满足a1+a2+…+an=2n+1,则该数列的通项an=$\left\{\begin{array}{l}{3,}&{n=1}\\{{2}^{n-1},}&{n≥2}\end{array}\right.$,数列{$\frac{1}{{a}_{n}}$}的前2015项之和为$\frac{7}{3}$+($\frac{1}{2}$)2013

查看答案和解析>>

同步练习册答案