精英家教网 > 高中数学 > 题目详情
12.已知y=f(x)为奇函数,若f(x)=g(x)+x2且g(1)=1,则g(-1)=-3.

分析 先求得f(1)的值,再根据f(x)为奇函数,可得f(-1)的值,从而得到g(-1)的值.

解答 解:因为f(1)=g(1)+12=2,y=f(x)为奇函数,
所以f(-1)=f(-1)+1=-2,
∴g(-1)=-3,
故答案为:-3.

点评 本题主要考查函数的奇偶性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.用辗转相除法或更相减损术求459与357的最大公约数是51.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线25x2-9y2=225的实轴长,虚轴长、离心率分别是(  )
A.10,6,$\frac{\sqrt{34}}{5}$B.6,10,$\frac{\sqrt{34}}{3}$C.10,6,$\frac{4}{5}$D.6,10,$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C1:y2=2px与圆C2:(x-2)2+y2=4交于O,A,B三点,且△OAB为直角三角形.
(1)求C1的方程;
(2)过坐标原点O作直线l分别交C1,C2于点F,E,若E是OF的中点,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的前n项和Sn=n2+an-1,则an=(  )
A.n-1B.n+1C.2n-1D.2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某机构为了解某地区居民收入情况,随机抽取了100,名居民进行调查,根据调查结果绘制的居民月收入的频率分布直方图如图所示,已知[3500,4500),[4500,5500),[5500,6500)月收入段的居民人数成等差数列.
(1)求直方图中a,b的值,并估计这100名居民月收入的平均数$\overline x$(同一组中的数据用该组区间的中点值作代表);
(2)若月收入不低于6500元的称“高收入群体”,在月收入[5500,6500)段和[6500,7500)段按比例抽取5人,再从5人中随机选取3人了解其所从事的职业,求3人中至少有一人属于“高收入人群体”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?α∈R,使得sinα+2cosα=3;命题q:?x∈(0,$\frac{π}{2}$),x>sinx,则下列判断正确的是(  )
A.p为真B.¬q为假C.p∧q为真D.p∨q为假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“a=4或a=-3“是”函数f(x)=x3+ax2+bx+a2在x=1处有极值10“的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$,( φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l1的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,直线l2的极坐标方程为θ=$\frac{π}{2}$,l1与l2的交点为M.
(I)判断点M与曲线C的位置关系;
(Ⅱ)点P为曲线C上的任意一点,求|PM|的最大值.

查看答案和解析>>

同步练习册答案