【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x.
(1)求f(x)的解析式,并画出f(x)的图象;
![]()
(2)设g(x)=f(x)-k,利用图象讨论:当实数k为何值时,函数g(x)有一个零点?二个零点?三个零点?
【答案】(1) f(x)=
,函数图象略.
(2)当k<-1或k>1时,有1个零点;当k=-1或k=1时,2个零点;
当-1<k<1时,3个零点.
【解析】
试题分析:(Ⅰ)先设x<0可得﹣x>0,则f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,由函数f(x)为奇函数可得f(x)=﹣f(﹣x),可求,结合二次函数的图象可作出f(x)的图象
(II)由g(x)=f(x)﹣k=0可得f(x)=k,结合函数的图象可,要求g(x)=f(x)﹣k的零点个数,只要结合函数的图象,判断y=f(x)与y=k的交点个数
试题解析:
(Ⅰ)当x≥0时,f(x)=x2﹣2x.
设x<0可得﹣x>0,则f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x
∵函数f(x)为奇函数,则f(x)=﹣f(﹣x)=﹣x2﹣2x
∴
函数的图象如图所示
![]()
(II)由g(x)=f(x)﹣k=0可得f(x)=k
结合函数的图象可知
①当k<﹣1或k>1时,y=k与y=f(x)的图象有1个交点,即g(x)=f(x)﹣k有1个零点
②当k=﹣1或k=1时,y=k与y=f(x)有2个交点,即g(x)=f(x)﹣k有2个零点
③当﹣1<k<1时,y=k与y=f(x)有3个交点,即g(x)=f(x)﹣k有3个零点
![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的上下两个焦点分别为
,过点
与
轴垂直的直线交椭圆
于
两点,
的面积为
,椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)已知
为坐标原点,直线
与
轴交于点
,与椭圆
交于
两个不同的点,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)当
时,求函数
的最大值;
(2)令
,其图象上存在一点
,使此处切线的斜率
,求实数
的取值范围;
(3)当
,
时,方程
有唯一实数解,求正数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方形
的中心为点
,
边所在的直线方程为
.
(1)求
边所在的直线方程和正方形
外接圆的方程;
(2)若动圆
过点
,且与正方形
外接圆外切,求动圆圆心
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
所围成封闭图形面积为
,曲线
是以曲线
与坐标轴的交点为顶点的椭圆, 离心率为
. 平面上的动点
为椭圆
外一点,且过
点
引椭圆
的两条切线互相垂直.
(1)求曲线
的方程;
(2)求动点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
分别是椭圆
的左、右焦点,离心率为
,
分别是椭圆的上、下顶点,
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于相异两点
,且满足直线
的斜率之积为
,证明:直线
恒过定点,并采定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an},{bn},{cn}满足a1=a,b1=1,c1=3,对于任意n∈N* , 有bn+1=
,cn+1=
.
(1)求数列{cn﹣bn}的通项公式;
(2)若数列{an}和{bn+cn}都是常数项,求实数a的值;
(3)若数列{an}是公比为a的等比数列,记数列{bn}和{cn}的前n项和分别为Sn和Tn , 记Mn=2Sn+1﹣Tn , 求Mn<
对任意n∈N*恒成立的a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com