精英家教网 > 高中数学 > 题目详情

如图,已知直线与抛物线相切于点,且与轴交于点为坐标原点,定点的坐标为.

(1)若动点满足,求点的轨迹

(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点之间),试求△OBE与△OBF面积之比的取值范围.

 

【答案】

(I)点M的轨迹为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆

(II)(3-2, 1)

【解析】

试题分析:(I)由∴直线l的斜率为

故l的方程为,∴点A坐标为(1,0)

   则

整理,得   

∴点M的轨迹为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆

(II)如图,由题意知直线l的斜率存在且不为零,设l方程为y=k(x-2)(k≠0)①

将①代入,整理,得

由△>0得0<k2<.  设E(x1,y1),F(x2,y2)

 ②   令,由此可得

由②知

    

∴△OBE与△OBF面积之比的取值范围是(3-2, 1)

考点:本题主要考查椭圆标准方程,直线与椭圆的位置关系,平面向量的坐标运算,简单不等式解法。

点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆标准方程时,主要运用“直接法”,将向量关系用坐标表示,达到解题目的。(2)作为研究直线与椭圆位置关系下,三角形面积之比的范围问题,应用韦达定理及向量,建立了的不等式,进一步使问题得解。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考文科数学 题型:填空题

22.(本题满分15分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;

 
(Ⅲ)过A、B分别作抛物C的切线交于点M,求面积之和的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题

(本题满分18分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;

(Ⅲ)过AB分别作抛物C的切线交于点M,求面积之和的最小值.

 

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:解答题

已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于A、C、D、B四点,试证明|AC||BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分15分)

        已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5。

   (I)求抛物线G的方程;

   (II)如图,过抛物线G的焦点的直线依次与抛物线G及圆交于A、C、D、B四点,试证明为定值;

 
   (III)过A、B分别作抛物G的切线交于点M,试求面积之和的最小值。

查看答案和解析>>

同步练习册答案