精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,点_P到定点F(-1,0)的距离的两倍和它到定直线x=-4的距离相等.
(Ⅰ)求点P的轨迹C的方程,并说明轨迹C是什么图形;
(Ⅱ)已知点Q(l,1),直线l:y=x+m(m∈R)和轨迹C相交于A、B两点,是否存在实数m,使△ABQ的面积S最大?若存在,求出m的值;若不存在,说明理由.
分析:(I)根据直接法求轨迹方程求解;
(II)假设存在,利用直线与圆锥曲线相交弦长公式,构造三角形面积关于m的函数,利用函数求最值的方法求解即可.
解答:解:(Ⅰ)设P(x,y),根据题意,2|PF|=d.
即:2
(x+1)2+y2
=|4+x|,
平方化简得3x2+4y2=12,即
x2
4
+
y2
3
=1

点P的轨迹是长轴、短轴长分别为4、2
3
,焦点在x轴上的椭圆.
(Ⅱ)设直线L与轨迹C的交点为A(x1,y1),B(x2,y2)两点.
联立方程得:
y=x+m
x2
4
+
y2
3
=1
⇒7x2+8mx+4m2-12=0,
x1+x2=-
8m
7
,x1x2=
4m2-12
7

△=64m2-4×7×4(m2-3)=48(7-m2)>0
|AB|=
2[(x1+x2)2-4x1x2]
=
4
6
7
×
7-m2

点Q(1,1)到L:y=x+m的距离为
|m|
2

∴S=
1
2
×
4
6
7
×
7-m2
×
|m|
2
=
2
3
7
×
(7-m2)m2
2
3
7
×
7-m2+m2
2
=
3

当且仅当7-m2=m2,即m=±
14
2
时,满足△=48(7-m2)>0,
∴存在实数m=±
14
2
,使△ABQ的面积S最大,最大值为
3
点评:本题考查直接法求轨迹方程及直线与圆锥曲线的位置关系.存在性问题的常见解法:假设存在,依据题设条件求出,说明存在;求不出或得出明显矛盾,说明不存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案