精英家教网 > 高中数学 > 题目详情

【题目】某企业招聘中,依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲参加招聘,已知他每次考A科合格的概率均为 ,每次考B科合格的概率均为 .假设他不放弃每次考试机会,且每次考试互不影响.
(1)求甲恰好3次考试通过的概率;
(2)记甲参加考试的次数为ξ,求ξ的分布列和期望.

【答案】
(1)解:设甲“第一次考A科成绩合格”为事件A1,“A科补考后成绩合格”为事件A2

“第一次考B科成绩合格”为事件B1,“B科补考后成绩合格”为事件B2

甲参加3次考试通过的概率为:


(2)解:由题意知,ξ可能取得的值为:2,3,4

=

分布列(如表)

ξ

2

3

4

P


【解析】设甲“第一次考A科成绩合格”为事件A1 , “A科补考后成绩合格”为事件A2 , “第一次考B科成绩合格”为事件B1 , “B科补考后成绩合格”为事件B2 . (1)甲参加3次考试,是指补考一次,且合格;(2)确定ξ可能取得的值,求出相应的概率,进而可得ξ的分布列和期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?

(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.

附: .

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在( n的展开式中,第6项为常数项.
(1)求n;
(2)求含x2项的系数;
(3)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的图象与x轴相邻两个交点间的距离为 ,且图象上一个最低点为M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间;
(Ⅲ)当x∈[ ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数y= 的定义域为(
A.(﹣∞,1]
B.(﹣∞,2]??
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACBAC3 BC2P是△ABC内的一点.

(1)若P是等腰直角三角形PBC的直角顶点,求PA的长;

(2)若∠BPC,设∠PCBθ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个人有n把钥匙,其中只有一把可以打开房门,他随意的进行试开,若试开过的钥匙放在一边,试开次数X为随机变量,则P(X=k)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱如图所示,并要求正四棱柱的高是正四棱锥的高的4倍.

1则仓库的容积是多少?

2若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面垂直,且.

1)求证:平面平面

2)在线段上是否存在了点,使得平面?并说明理由.

查看答案和解析>>

同步练习册答案