精英家教网 > 高中数学 > 题目详情
16.等差数列{an}的前n项和为Sn,其中n∈N*,则下列命题错误的是(  )
A.若an>0,则Sn>0B.若Sn>0,则an>0
C.若an>0,则{Sn}是单调递增数列D.若{Sn}是单调递增数列,则an>0

分析 由等差数列的性质可得:?n∈N*,an>0,则Sn>0,反之也成立.an>0,d>0,则{Sn}是单调递增数列.若{Sn}是单调递增数列,则d>0,而an>0不一定成立.即可判断出正误.

解答 解:由等差数列的性质可得:?n∈N*,an>0,则Sn>0,反之也成立.an>0,d>0,则{Sn}是单调递增数列.
因此A,B,C正确.
对于D:{Sn}是单调递增数列,则d>0,而an>0不一定成立.
故选:D.

点评 本题考查了等差数列的通项公式与前n项和直角的关系、等差数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.定义运算a?b如下:a?b=$\left\{\begin{array}{l}{a(b-1),a<0}\\{2a-b,a≥0}\end{array}\right.$,设函数f(x)=x?(x+1),则该函数的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=cosx的图象与函数y=($\frac{1}{2}$)|x-1|(-3≤x≤5)的图象所有交点的横坐标之和等于(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设p:“lgx,lg(x+1),lg(x+3)成等差数列”,q:“2x+1-$\frac{8}{3},{2^x}$,3成等比数列”,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有(  )
A.a1+a101>0B.a2+a100<0C.a3+a99=0D.a51=51

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设$\overrightarrow{a}$、$\overrightarrow{b}$是两个单位向量,其夹角为θ,则“$\frac{π}{6}<θ<\frac{π}{3}$”是“|$\overrightarrow{a}$-$\overrightarrow{b}$|<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={a-3,3a-5,3},B={a2+2,2a-2},若A∩B={3},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-4≥0}\\{x-y+2≥0}\\{2x-y-5≤0}\end{array}\right.$,则z=$\frac{x+y+2}{x+3}$的取值范围是[0,$\frac{4}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)是偶函数,且f(x+$\frac{1}{2}$)是奇函数,则下列结论不正确的是(  )
A.f(x-1)是奇函数B.f(x-$\frac{1}{2}$)是奇函数C.f(x+1)是偶函数D.f(x+2)偶函数

查看答案和解析>>

同步练习册答案