精英家教网 > 高中数学 > 题目详情
7.函数y=cosx的图象与函数y=($\frac{1}{2}$)|x-1|(-3≤x≤5)的图象所有交点的横坐标之和等于(  )
A.4B.6C.8D.10

分析 分别作出两个函数的图象,根据图象的对称性即可得到交点坐标问题.

解答 解:作出函数y=cosπx的图象,则函数关于x=1对称,
同时函数y=($\frac{1}{2}$)|x-1|(-3≤x≤5)也关于x=1对称,
由图象可知,两个函数在-3≤x≤5上共有8个交点,两两关于x=1对称,
设对称的两个点的横坐标分别为x1,x2
则x1+x2=2×1=2,
∴8个交点的横坐标之和为4×2=8,
故选:C.

点评 本题主要考查函数交点个数以及数值的计算,根据函数图象的性质,利用数形结合是解决此类问题的关键,综合性较强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.对“若(a+1)${\;}^{-\frac{1}{3}}$>(3a-1)${\;}^{-\frac{1}{3}}$,求a的取值范围”,同学甲这样求解:因为y=x${\;}^{-\frac{1}{3}}$为减函数,所以a+1<3a-1,所以a>1,你认为这样求解过程正确吗?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数Z=i+1共轭复数的虚部是(  )
A.-1B.1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设实数x,y满足$\left\{\begin{array}{l}{y≤2x+2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则$\frac{x+3}{y+1}$的取值范围是(  )
A.[$\frac{5}{7}$,5]B.[$\frac{5}{7}$,1]C.[$\frac{1}{5}$,$\frac{7}{5}$]D.(-∞,$\frac{1}{5}$]∪[$\frac{7}{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若sn=254,则n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若实数x,y满足约束条件$\left\{\begin{array}{l}y≤4-x\\ 2x-y+1≥0\\ x-4y-4≤0\end{array}\right.$,则z=x-2y的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,-1),$\overrightarrow{c}$=(3,-2),若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则m的值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an}的前n项和为Sn,其中n∈N*,则下列命题错误的是(  )
A.若an>0,则Sn>0B.若Sn>0,则an>0
C.若an>0,则{Sn}是单调递增数列D.若{Sn}是单调递增数列,则an>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列4个函数中:
①y=2008x-1;
②y=loga$\frac{2009-x}{2009+x}$ (a>0且a≠1);
③y=$\frac{{x}^{2009}+{x}^{2008}}{x+1}$
④y=x($\frac{1}{{a}^{-x}-1}$+$\frac{1}{2}$)(a>0且a≠1).
其中既不是奇函数,又不是偶函数的是①③.(填序号)

查看答案和解析>>

同步练习册答案