精英家教网 > 高中数学 > 题目详情
已知函数,函数.
(1)当时,求函数f(x)的最小值;
(2)设函数h(x)=(1-x)f(x)+16,试根据m的取值分析函数h(x)的图象与函数g(x)的图象交点的个数.
(1) x=4时,取等号,故函数f(x)的最小值为0.
(2)当时,h(x)的图象与g(x)的图象恰有1个交点;
时,h(x)的图象与g(x)的图象恰有2个交点;
时,h(x)的图象与g(x(的图象恰有3个交点.
(1) 方法一: ∵ x>1 , 
当且仅当x=4时,取等号,故函数f(x)的最小值为0;
方法二:∵ x>1,
当且仅当即x=4时,取等号,故函数f(x)的最小值为0.
方法三:求导(略) ……………………………………4分
(2)由于h(x)=(1-x)f(x)+16=
设 F(x)=g(x)-h(x)=   (),则
,……………………………6分
得x=3或x=1(舍)又∵ ,,F(3)=6ln3-15+m
根据导数的符号及函数的单调情况、取极值的情况作出的草图如下:………………11分
由此可得:
时,h(x)的图象与g(x)的图象恰有1个交点;
时,h(x)的图象与g(x)的图象恰有2个交点;
时,h(x)的图象与g(x(的图象恰有3个交点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知
   (1)当a=1时,试求函数的单调区间,并证明此时方程=0只有一个实数根,并求出此实数根;
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x2+8x,g(x)6lnxm.(Ⅰ)求f(x)在区间[tt+1]上的最大值h(t);(Ⅱ)是否存在实数m,使得yf(x)的图象与yg(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=在[1+,∞上为增函数.  
(1)求正实数a的取值范围.
(2)若a=1,求征:(n∈N*且n≥2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(I)若,求函数在区间的最大值与最小值;
(II)若函数在区间上都是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:在函数的图象上,以为切点的切线的倾斜角为
(I)求的值;
(II)是否存在最小的正整数,使得不等式恒成立?如果存在,请求出最小的正整数,如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数.

(1)当时,求函数的单调区间和极值;
(2)当时,若对任意,均有,求实数的取值范围;
(3)若,对任意,且,试比较 的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=(2x3-3)(x2-5),则f′(x)等于
A.10x4-30x2-6xB.12x3
C.6x4-30x2D.4x4-6x

查看答案和解析>>

同步练习册答案