精英家教网 > 高中数学 > 题目详情
已知f(x)=
1+3x
2
-
|1-3x|
2
,则f(x)的值域是(  )
A、(0,2]
B、(0,3]
C、[1,2]
D、(0,1]
考点:函数的值域
专题:函数的性质及应用
分析:利用换元法,即令t=3x,然后研究一个分段函数的最值,结合单调性容易求解.
解答: 解:令t=3x>0,则原函数可化为g(t)=
1+t
2
-
|1-t|
2
(t>0).
g(t)=
t,0<t≤1
1,t>1
,所以当t∈(0,1]时,0<g(t)≤1;当t>1时,g(t)=1.
故函数的值域为(0,1].
故选D.
点评:本题考查了含绝对值符号的函数值域的求法,一般先将绝对值符号去掉转化为分段函数,然后借助于单调性求值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若
FP
=4
FQ
,则|QO|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x2+a,x∈R的图象在点x=0处的切线为y=bx.(e≈2.71828).
(1)求函数f(x)的解析式;
(理科)(2)若k∈Z,且f(x)+
1
2
(3x2-5x-2k)≥0对任意x∈R恒成立,求k的最大值.
(文科)(2)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的面积为36,BC平行于x轴,顶点A、B和C分别在函数y=3logax、y=2logax和y=logax(其中a>1)的图象上,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等差数列{an}满足a1=2,a22=a5+6,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,若
m
=(c,cosC),
n
=(a,sinA),且
m
n

(1)求角C的大小;
(2)求
3
sinA-cos(B+
π
4
)的最大值,并求取最大值时角A,B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在一个极坐标系中点C的极坐标为(2,
π
3
)

(1)求出以C为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形
(2)在直角坐标系中,以圆C所在极坐标系的极点为原点,极轴为x轴的正半轴建立直角坐标系,点P是圆C上任意一点,Q(5,-
3
)
,M是线段PQ的中点,当点P在圆C上运动时,求点M的轨迹的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

A={x|a-1<x<a+1},B={x|x>5或x<-1},且A∩B=∅,则a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若无穷等比数列{an}的各项和等于公比q,则首项a1的最大值是
 

查看答案和解析>>

同步练习册答案