精英家教网 > 高中数学 > 题目详情

【题目】2018届吉林省普通中学高三第二次调研】某校冬令营有三名男同学A,B,C和三名女同学X,Y,Z

1)从6人中抽取2人参加知识竞赛,求抽取的2人都是男生的概率;

2)若从这3名男生和3名女生中各任选一名,求这2人中包含A且不包含X的概率.

【答案】.

【解析】试题分析:(1)将事件穷举出来,写出概率;(2)将事件穷举出来,写出概率

试题解析:

(Ⅰ)由题意知,从6人中任选两人,其一切可能的结果组成的基本事件有:

,共.

所选两个人都是男的事件所包含的基本事件有: ,个,

则所求事件的概率为: .

(Ⅱ)从这3名男生和3名女生各任选一个,其一切可能的结果组成的基本事件有:

,共个,

包含但不包括的事件所包含的基本事件有: ,共个,

所以所求事件的概率为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是且各阶段通过与否相互独立.

(1)求该选手在复赛阶段被淘汰的概率;

(2)设该选手在竞赛中回答问题的个数为ξ,求ξ的分布列与均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.

(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取8人,再从这8名学生中随机抽取3人参加体育知识问卷调查,记“课外体育不达标”的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上任意一点到的距离比到轴的距离大1椭圆的中心在原点,一个焦点与的焦点重合,长轴长为4

(Ⅰ)求曲线和椭圆的方程;

椭圆上是否存在一点经过点作曲线的两条切线为切点)使得直线过椭圆的上顶点,若存在,求出切线的方程,不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856309)

已知抛物线C的方程为x2=4yM(2,1)为抛物线C上一点,F为抛物线的焦点.

(Ⅰ)求|MF|;

(Ⅱ)设直线l2ykxm与抛物线C有唯一公共点P,且与直线l1y=-1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856330)

已知等比数列{an}的前n项和为Sn,且a3=4,a3a4+2,a5成等差数列.数列{}的前n项和为Tn.

(Ⅰ)求数列{an}的通项公式以及前n项和Sn的表达式;

(Ⅱ)若Tn<m对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中一年级600名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(1)从总体的600名学生中随机抽取一人,估计其分数小于70的概率;

(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=x3x满足:对于任意的x1x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,则a的取值范围是(  )

A. [- ]

B. [- ]

C. (-∞,- ]∪[,+∞)

D. (-∞,- ]∪[,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列 满足: 或1().对任意,都存在,使得.,其中 且两两不相等.

(I)若.写出下列三个数列中所有符合题目条件的数列的序号;

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)记.若,证明:

(Ⅲ)若,求的最小值.

查看答案和解析>>

同步练习册答案