精英家教网 > 高中数学 > 题目详情
已知向量
a
b
满足:
a
+2
b
5
4
a
-
b
垂直,且|
a
|=1,|
b
|=1,则
a
b
的夹角为(  )
分析:根据
a
+2
b
5
4
a
-
b
垂直,则(
a
+2
b
)•(
5
4
a
-
b
)=0,然后将|
a
|=1,|
b
|=1代入即可求出cosθ,从而求出
a
b
的夹角.
解答:解:∵
a
+2
b
5
4
a
-
b
垂直,
∴(
a
+2
b
)•(
5
4
a
-
b
)=0,
5
4
a
2-2
b
2+
3
2
a
b
=0,
∵|
a
|=1,|
b
|=1,
5
4
-2+
3
2
cosθ=0,
即cosθ=
1
2

∵θ∈[0,π],
∴θ=
π
3

故选C.
点评:本题主要考查了数量积判断两个平面向量的垂直关系,以及向量夹角的计算,同时考查了运算求解的能力,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
+
b
|=
3
|
a
-
b
|
|
a
|=|
b
|=1
,则|
3a
-2
b
|
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=2,|
b
|=1,
a
b
的夹角为60°,则|
a
-2
b
|等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=
2
,|
b
|=3,
a
b
的夹角为45°,求|3
a
-
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a,b满足|a|=2,|b|=3,|2a+b|=
37
,则a与b
的夹角为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知向量
a
b
满足|
a
|=2|
b
|≠0,且关于x的函数f(x)=2x3+3|
a
|x2+6
a
b
x+5 在实数集R上单调递增,则向量
a
b
的夹角的取值范围是(  )

查看答案和解析>>

同步练习册答案