精英家教网 > 高中数学 > 题目详情
19.如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=BC=4,DF=2$\sqrt{2}$.
(1)求证:PA⊥平面ABC;
(2)求三棱锥D-BEF与三棱锥P-ABC的体积的比值.

分析 (1)根据中位线定理可得DE=EF=2,利用勾股定理的逆定理得出DE⊥EF,从而PA⊥EF,结合PA⊥AC得出PA⊥平面ABC;
(2)根据中点的性质得出△BEF和△ABC的面积比,DE与PA的比值,带入棱锥的体积公式得出体积比.

解答 证明:(1)∵D,E,F分别为棱PC,AC,AB的中点,
∴DE∥PA,$DE=\frac{1}{2}PA=2$,$EF=\frac{1}{2}BC=2$,
∴DE2+EF2=DF2,∴DE⊥EF,
∴PA⊥EF,
又PA⊥AC,AC?平面ABC,EF?平面ABC,AC∩EF=E,
∴PA⊥平面ABC.
(2)∵D,E,F是PC,AC,AB的中点,
∴S△BEF=$\frac{1}{4}$S△ABC,DE=$\frac{1}{2}PA$.
∴VD-BEF=$\frac{1}{3}{S}_{△BEF}•DE$,
VP-ABC=$\frac{1}{3}{S}_{△ABC}•PA$=$\frac{1}{3}•4{S}_{△BEF}•2DE$=$\frac{8}{3}$S△BEF•DE.
∴$\frac{{V}_{D-BEF}}{{V}_{P-ABC}}=\frac{1}{8}$.

点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知抛物线y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线l与抛物线交于P(x1,2$\sqrt{2}$),Q(x2,y2)两点,则抛物线的准线方程为x=$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.抛物线y2=mx的焦点为F,点P(2,2)在此抛物线上,M为线段PF的中点,则点M到该抛物线准线的距离为(  )
A.3B.$\frac{7}{2}$C.2D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.焦点为F的抛物线C:y2=2px(p>0)上有一动点P,且点P到抛物线C的准线与点D(0,2)的距离之和的最小值为$\sqrt{5}$
(1)求抛物线C的方程;
(2)过点Q(1,1)作直线交抛物线C于不同于R(1,2)的两点A,B,若直线AR,BR分别交直线l:y=2x+2于M,N两点,求|MN|取最小值时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.欧巴老师布置给时镇同学这样一份数学作业:在同一个直角坐标系中画出四个对数函数的图象,使它们的底数分别为$\sqrt{3}$、$\frac{1}{10}$、e和$\frac{3}{5}$.时镇同学为了和暮烟同学出去玩,问大英同学借了作业本很快就抄好了,详见如图.第二天,欧巴老师当堂质问时镇同学:“你画的四条曲线中,哪条是底数为e的对数函数图象?”时镇同学无言以对,憋得满脸通红.眼看时镇同学就要被欧巴老师训斥一番,聪明睿智的你能不能帮他一把,回答这个问题呢?
曲线C1才是底数为e的对数函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$=(1,2),2$\overrightarrow{a}$-$\overrightarrow{b}$=(3,1),则$\overrightarrow{a}$•$\overrightarrow{b}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为0.954.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“?x∈R,x2+ax+1≥0成立”是“|a|≤1”的(  )
A.充分必要条件B.必要而不充分条件
C.充分而不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=3x+sinx,则满足不等式f(2m-1)+f(3-m)>0的m的取值范围是(  )
A.m>-2B.m>-4C.m<-2D.m<-4

查看答案和解析>>

同步练习册答案